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Abstract

Abstract

Consider a system which has an operating series subsystem consisting
of N components, an identical stand-by subsystem and a replacing
switch. Also, suppose that a technician is present on the site to repair
or replace failed elements of subsystems in the event of a breakdown,
each subsystem consists of N components. Grabski (2010), obtained a
tedious closed form for calculating the Reliability parameter of the
above system in cold standby configuration. Because of the complicated
forms of the introduced formulas, they are not applicable in practice.
In this article an approximation technique and some simulation study
is done for reliability analysis of certain similar system.
keywords:Semi-Markov, Redundancy, Cold Standby, Reliability.
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Introduction
Introduction

Reliability function is a fundamental factor which plays an important
role in evaluating the performance of engineering systems. To increase
the reliability of a system, there are a lot of approaches, one of those is
using redundant components in parallel. There are two well-known
types of redundancy strategies: active and standby. In active
redundancy, all components begin to operate simultaneously at time
zero, whereas in standby redundancy, redundant components are
sequentially put into operation whenever an active one fails.
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Introduction

Since in standby redundancy(cold standby), the redundant
component(system) has the failure rate of zero value, more attention is
paid to this method. In this study, a repairable cold standby system is
considered and its reliability is obtained by using the semi-Markov
modelling.
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ription and Construction the Semi-Markov Model

Description and Construction the Semi-Markov

Suppose that the system consists of an operating series subsystem, an
identical stand-by subsystem and a switch. Also, Suppose that a
technician is on site to repair or replace failed elements of subsystems
in the event of a breakdown.

Each subsystem consists of N components.

4€> I

Figure 1: Diagram of the system
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Description and Construction the Semi-Markov Model

When the operating subsystem fails, the switch acts and replaces the
standby subsystem with the operating one. Suppose that U is the
random variable corresponding to the operation of switch with
Bernouli distribution:

b(k)=P(U=k)=p"1 —p)'* k=0,1. 0<p<l1. (2.1)

System fails whenever the operating subsystem fails and the previously
failed subsystem has not been still renewed, or when the operating
subsystem fails and the replacing switch fails, also. Assume that by
failure of the whole system, it is replaced by a new identical one. The
time to replace the new system is nonnegative random variables n with
CDF

K(z) = P(n <), x> 0. (2.2)
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Description and Construction the Semi-Markov Model

Suppose that distributions of the times to failure of elements are
represented by non-negative mutually independent random variables

Cka k=1,..,N,

with probability density functions fx(x) ,z >0, k=1,...,N. also,
assume that the lengths of repair periods of failed units are represented
by identical copies of non-negative random variables ~;, k=1, ..., N,
with cumulative distribution functions:

Hi(z) = P(y < ), x> 0.

Moreover, we assume that all above mentioned random variables to be
independent.
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Description and Construction the Semi-Markov Model

Constructing a Semi-Markov model

Consider the following states:
0: Failure of the whole system;

k Renewal of the failed subsystem after the failure of k"
component, k =1, ..., N, and operation of the spare unit;

N + 1 : All operating units and the corresponding spares are "up".
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Description and Construction the Semi-Markov Model

Let
0=173,7,75,... - denote the instants of the states changes,

{Y(t) : t > 0} be a random process on the S = {0,1,...,N, N + 1},
which keeps constant on the half-intervals [7;, 77, 1); n=0,1,....

Create a new process by this way:

Let 79 and , 71, 79, ... denote the instants of the subsystem failures or

instants of the whole system renewal. The random process X (¢) : t > 0
defined by

X(0)=0, X(t)="Y(), for t € [rp, Ts1)  (2.3)
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Se:

Semi-Markov Kernel

The semi-Markov kernel is:
Q) = [Q;(t): 4,5 €8] (3.1)

where
Qij(t) = P(Tnt1 — 7o < 6, X(Tnp1) = J|X (1) = 0), t=>0 (3.2)

The sequence {X(7,) : n=0,1,...} is called the embedded Markov
chain with transition matrix P = [p;; = Q;;(c0) : 14,j €].

pij = lim Q;;(t) = P(X(7n41) = j|X(70) = 1) (3.3)

Kavoos Khorshidian Semi-Markov Modeling of Standby Sy February 17, 2022 11 /36



Semi-Markov Kernel

T; : the waiting time of state ¢ when the next state is unknown.
The cdf of random variable Tj is:

Z Qz] 7—'n—i-l —Tn < t|X(Tn) = Z) (34)
€S

T;j : the waiting time of state ¢ when the next stat is j.
The cdf of random variable T;; is:

Qj;(¥)

Fij(t) = P(Tpt1 — Tn S UX (1) =4, X (Thg1) = J) = -
ij

(3.5)
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Semi-Markov Kernel

The semi-Markov kernel has the form:

0 0 e 0 Qo,n+1(t)
Q) = Q1,§)(t) QlZ:L(t) : ‘ Ql,J:V(t) 0
Qnt+10(t) Qny1a(t) - Qn+in(t) 0

where after computations its elements become as follows:
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Semi-Markov Kernel

QN+1J / H 1 - F )dﬂ?, j=1L.,N

i£]
N
Qu10(t) = A —p)(1 = [[[1 = Ei(2))), i=0
=1
Q1) / Hi(x) 11 = Fr()]f;(x)da, ij=1,..N
k?’:]
Qio(t) / H;(x)dF (z i=1,.,N
where
N
F(z) =1-T][1 - Fi(2)]
k=1

From the assumption it follows that

Qon41(t) = K(2)
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Semi-Markov Kernel

Example: Consider a 3-state semi-markov process with the following

kernel
0 0 Qoz(t)
Q(t) = |Quo(t) Qu) 0 (3.6)
Q20(t) Qa1(?) 0

where

Qut)=p [ H@IFE)  Qu) = F0O) —p [ HEFE)

Qoo(t) = (L = p)F(2) Qa1 (t) = pF (1)
and

Qoz(t) = K (1)
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v Kernel

Assume that, the initial state is 2 . It means that an initial distribution
is
p(0)=[0 0 1] (3.7)
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An Approximate Rel Function

An Approximate Reliability Function

In this section an approximate reliability function of the system by
using results from the theory of semi-Markov processes perturbations
has been presented.
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An Approximate Reliability Function

The first arrival at the set of states A C S of the embedded Markov
chain {X(7,,) : n € Np} is difined as

Ag=min{n € N : X(r,) € A} (4.1)

The first passage time to the set of states A C S of the semi-Markov
process {X(t) : t > 0} is denoted by

Oy = TAL (4.2)

Suppose that ©;4 denotes the first passage time from the state ¢ € A to
a subset A. The CDF of ©;4 is the function

q)lA( ) P(@A < th( ) )a t>0 (43)
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An Approximate Reliability Function

Theorem 1.For the regular semi-Markov processes such that,
fia=P(As<oo|X(0)=i)=1, ic A (4.4)

distributions are proper and they are the unique solutions of the
equations system

Diat) =Y Qyt)+ /Ot Dpa(t — 2)dQy(x),i € Ao (4.5)

JEA kesS
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An Approximate Reliability Function

Theorem 2.If f;4 = 1 and E(TZ%) be bounded then there exist
expectations E(6;4),i € A and E(#2,),i € A and they are unique
solutions of the linear systems equations, which have following matrix
forms

(I-P;)0;=T; (4.6)
where

Pi=[pyj:i,j€A], ©1=[E®©ia):icA’, T;=[ET):icA

where -
P,=1[pj:i,jeA, 02;=[EO}): ic A"
By=[bia:ic AT, bia=ET?) +2 pinE(Ty)E(6ia)
icA

and I is the unit matrix. e
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An Approximate Reliability Function

Here the time to failure of the system is denoted 60;4 that is the first
passage time from the state i=2 to the subset A = {0}. Therefore, the
reliability function

R(t) = P((ggo > t) =1- (I)Qo(t),t > 0. (48)

The transition matrix of the embedded Markov chain of the
semi-Markov process {X(¢) : ¢t > 0} is

0 0 1
P=|po pu O (4.9)
p20 p21(t) O

where
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An Approximate Reliability Function

o0
pio =1 —pi1, p11=P/0 H(z)dF(z), po=1-p, pa=p

The CDF of the waiting times T;,7 = 0,1, 2 are

Hence
E(To) = E(n), E(M)=E(), E(T)=E(Q) (4.10)

In this case the solution of equation (4.7) is:
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An Approximate Reliability Function

Let A = S — A be a finite subset of states and A be at least countable
subset of S. Suppose {X(t) : t > 0} is SM process with the state space
S = AU A and the kernel Q(t) = [Qy; : i,j € 5], the elements of which
have the form Q;; = p;; Fi;(t) . Assume that

Dij .. ‘
EiZsz‘j, pgjzl_wg i,j €A
jEA €

A semi-Markov process{ X (t) : ¢ > 0} with the discrete state space S
defined by the renewal kernel Q(t) = [p;;Fi;(t) : 4,5 € 5], is called the
perturbed process with respect to SM process {X%(¢) : t > 0} with the

state space A defined by the kernel Q°(t) = [P0 Fij(t) 4,5 € Al.
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An Approximate Reliability Function

The number
o
m0 = / 1 - GO(t))dt, icd (4.12)
0

where
G(t) =D Q) (4.13)
jeA
is the expected value of the waiting time in state for the process
{XO(t) : t > 0}.
Denote the stationary distribution of the embedded Markov chain in
SM process {X(t) : t > 0} by 7° = [Y :i € (4)] . Let

€= Zﬂ'?ei, m° = Zﬂ'?mi (4.14)

icd icA
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An Approximate Reliability Function

let ©i4 = inf{t: X(t) € A|X(0) =i}, ic A

Theorem 3. If the embedded Markov chain defined by the matrix of
transition probabilities P = [p;; : i,j € S] satisfies the following
conditions

fia=P(As < 0|X(0)=1) =1, ie A

Je>0 suchthat Vi,jeS 0<E(T;) <c
then
. ) I R4
ll_r)r(l] POjs>2x)=¢€ . (4.15)

In the following a simulation study for reliability of the semi-markov
process with three states has been done.
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Simulation

Simulation

Example 1. Suppose that probability of the switch works is 0.8,
distribution of that the lengths of repair periods is F(4), distribution of
time to failure of elements is Gamma(3,10) and distribution of
replacing time of system is E(1).

The transition matrix of the embedded Markov chain of the
semi-Markov process is

0 0 1
P=1021 079 0
02 08 0
The reliability function is
R(t) = e 501t
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Simulation

that is shown in Figure 2.
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Simulation

Figure 3 compare two reliability functions, one is calculated using
analytical formulas and the other is simulated with numerical values.
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Simulation

Figures 4 and 5 show the distribution and the failure rate function of
the simulated data:

Curmatative pro o
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Simulation
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Simulation

Example 2. Suppose that probability of the switch works is 0.95,
distribution of that the lengths of repair periods is W(3,1),
distribution of time to failure of elements is E(1) and distribution of
replacing time of system is £(2). The transition matrix of the
embedded Markov chain of the semi-Markov process is

0 0 1
P = |0.5904 0.4096 0 (5.1)
005 095 0

The reliability function is as follows

0.5904

R(t) = e 1791 (5.2)
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Simulation

Figure 6 shows of this function
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Simulation

Figure 7 compare two reliability functions, one is calculated using
analytical formulas and the other is simulated with numerical values.
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Simulation

Figures 8 and 9 show the distribution and the failure rate function of
the simulated data:

Curmulative probanii

Figure: Distribution function for lifetime data
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Simulation
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conclusion
conclusion

The approximation of reliability function for semi-Morkov process
defining on repairable cold standby system is obtained. Also, Figures 3
and 7 show that this function is good agreement with the reliability
function obtained in other ways (calculated by the software MATLAB
in a different way) for the simulated data.
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