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Definitions

Wiener processes

A Gaussian process {W(y); 0 < y < o0, } if EWM(y) =0 and
EW(y1))WM(y2) = y1 A\ y2

Brownian bridge

A Gaussian process {B(y); 0 < y < 1,} is called a Brownian bridge if EB(y) =0

and EB(y1)B(y2) = y1 A ya — y1.y2
o B(0) = B(1) = 0

| A

| \

Kiefer process

A centered Gaussian process {K(y, t);0 < y < 1,0 < t < oo} with covariance
function E(K(s, t)K(s,t)) = (t A t1)(s A st — sst)




|
Definition

Strong approximations (strong invariance principle )

e Wiener approximation for the partial sums of i.i.d. random variables

S, = W, + O(logn) a.s.

e Approximation of the empirical process by a Brownian bridge
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Motivation and history

Two independent source

e Erdos and Kac (1946), On certain limit theorems of the theory of probability.
Bull. Amer. Math. Soc. 52 292-302.

e Doob (1949), entitled "Heuristic approach to the Kolmogorov-Smirnov
theorems”. Ann. Math. Statist. 20 393-403.
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First origin

Classical central limit theorem

Let Xy,..., X, iid~ F(-),EX;=0,EX? = 1,5, = 37, X
Let Yi,..., Y, iid~ N0,1), T, =31, Y

P(%’S,, < x)— P(%

e as time goes on, S, forgets about the distribution function F where it has come
from.

T, <x)—0
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-
Erdos and Kac (1946): (weak) invariance principle

i) = Jim P(r*" max 5= )

Ga(y) = lim P(n=1/% max || = y),
Gs0) = lim P(n=2 3 st =),
Lt k=1

Gi0) = lim P(n 3151 = ).
n-+eo k=1
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e They proved that the limit distributions (i)-(iv) exist and they do not depend on
the initial distribution of X;. They called this method of proof the (weak)
invariance principle, and their paper has initiated a new methodology for proving
limit laws in probability theory.
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h(Sa()) 2 h(W(-))

for every continuous functional h: C(0,1) — R

Si(t) = %{s[nt] + Xigea (nt — [nf])}
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Strassen (1964): new form of the (strong) invariance principle

Theorem 0.2%,
—pn=1/2
(0.9*) Sup iSH (t) n W(nt)l a.s. 0.
[ ETE1 Yloglogn
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Connection

e The precise connection between weak and strong invariance principles was
established by Strassen (1965a) (cf. also Dudley (1968) and Wichura (1970)) via
the so-called Prohorov distance of probability measures. In fact these results state
a kind of equivalence between these two forms of invariance.
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Second origin

Let Ui, U, ... be independent uniform (0,1) random variables. Define a uniform
empirical distribution function as

FUn(t Z]-U<t, te [0 1]

Define a uniform empirical process as

an(t) =vn(Fua(t)—t), te[0,1].
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Second origin

e Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
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Second origin

e Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
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e Prohorov (1956) and Skorohod (1956) h(cv,) - h(B(-))
e Brillinger (1969): first SIP

sup |d,(t) — Ba(t)| = O(n~*(log n)*/?(loglog n)*/*), a.s.
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Second origin

e Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
e Donsker (1952): «, X, B(-)

e Prohorov (1956) and Skorohod (1956) h(cv,) - h(B(-))
e Brillinger (1969): first SIP

sup |d,(t) — Ba(t)| = O(n~*(log n)*/?(loglog n)*/*), a.s.
<

0<t<1

o Kiefer (1972).

sup_|v/naa(y) — Ky, n)| = O(n*/*(log n)*/?)  a.s.
0<y<1
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Komlés, Major, Tusnady approximation

e the KMT embedding

e the Hungarian embedding

e Komlés, J., Major, P. Tusnddy G. (1975). An approximation of partial sums of
independent RV'-s, and the sample DF. |. Z. Wahrsch. Verw. Gebiete 32 111-131.
e sharp bound for the speed of this weak convergence .
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the KMT approximation

Theorem

For EP {a,(t); 0 < t < 1} there exists a probability space on which one can define
a Brownian bridge {B,(t); 0 < t < 1} for each n and a Kiefer process
{K(y, t);0 <y <1,t> 0} such that

P{ sup |an(t) — Ba(t)] > %(Clogn—i—x)} < Le™

0<t<1

P{ sup  sup |KY2a(y) — K(y, k)| > (Clogn+x) log n} < Le™
0<k<n0<y<1 Vi

for all x € R, where C, L and X\ are positive constants
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Corollary

sup lan(t) — Bu(0) = OC 2

a(y) — Ky, 12| _ o
O?)Ilem ) (y, n)/n*'<| ( "

)7 a.s.
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Corollary

Inn
(1) — Bp(t)] = O(—=
Oiutzlla() (t)] (\/E

n n)2
02‘;21 lan(y) = K(y, n)/n*/?| = O((l\[n)

e Bretagnolle and Massart (1989) provided explicit constants
C=12,L=2,X=1/6.

), as.

), as.
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N
Results

e Weak limit theorems, as Donsker’s invariance principle for the empirical
distribution function
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N
Results

e Weak limit theorems, as Donsker’s invariance principle for the empirical
distribution function

e Almost sure results, as the functional form of the law of the iterated logarithm
e From a statistical point of view, strong approximations with rates allow to
construct many statistical procedures
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Extensions

e Berkes and Philipp (1977) : Strong approximations for the empirical process
with dependent data (strongly mixing),

o Kuelbs (1973), J. Hoffman-Jorgensen-G. Pisier (1976), Garling (1976): higher
dimensional Euclidean space or a Banach space

e Random size partial sum

e Csorgd , M. and Revesz , P. (1978). Strong approximation of the quantile
process. Ann. Statist. 6 882-894

e Burke, Csorgé and Horvath (1981, 1988): Random censorship model strong

approximation for the product-limit process Z,(t) := v/n[F,(t) — F(1)].
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Applications

Nonparametric density estimation

nonparametric regression estimation

characteristic functions

mean residual lifetime processes

empiric total-time-on-test,

Lorenz, concentration, and related processes

can be approximated by appropriate Gaussian processes.
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Application: Nonparametric density estimation

e Let Xi,..., X, iid f, the kernel estimate f, of fintroduced by Rosenblatt (1956)
and defined by

B0 =2 K =4 [ KRG

=1 n

K is a kernel function, and h, is a sequence of (positive) “bandwidths” tending to
zero as n — 00.

_ A review on the strong Gaussian approximation 23/27



Application: Nonparametric density estimation

e Parzen (1962): consistent estimator

e Nadaraya (1965), Schuster (1969) and Van Ryzin (1969): The weak and strong
uniform consistency properties of f,. Condition placed on the bandwidth for
strong uniform consistency include 3 exp(—cnh,?) < oo for all positive c.

e Bickel and Rosenblatt (1971) : strong approximation( Brillinger (1969)) predate
the development of the KMT approximation,

e Revesz (1976b) and Rosenblatt (1976) used the KMT approximation to derive
asymptotically distribution-free confidence bands for the expected value of f,(x),
improving on the earlier results of Bickel Rosenblatt.

e Silverman (1978): strong uniform consistency for f, — f using the KMT
approximation. weak condition

log n
nh,

—0 as n—
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Nonparametric density estimation

no-En = o [k - F¥)
- = / [Fn(x) — F()]dK(— hn °)
= f [ B F(x))dk (- )+o<'f’7in”>
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|
Random Censorship Model

e Blum and Susarla (1980):

(oo}
B0 =4 [ KRS, 1)
nJo n

e The properties of the kernel estimator f, have been examined by Blum and
Susarla (1980), Foldes, Rejté and Winter (1981) and Mielniczuk (1986), among
others.

e Zhang (1998) established the strong uniform consistency for f, — f using the
strong approximation technique developed by Burke, Csérgé and Horvath (1981,
1988) for the product-limit process Z,(t) := /a[Fa(t) — F(1)].
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Thank you for your attention
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