

A review on the strong Gaussian approximation of empirical processes and its applications

V. Fakoor

Department of Statistics, Ferdowsi University of Mashhad.
23th Workshop on Applied Stochastic Process; Shiraz University

Contents

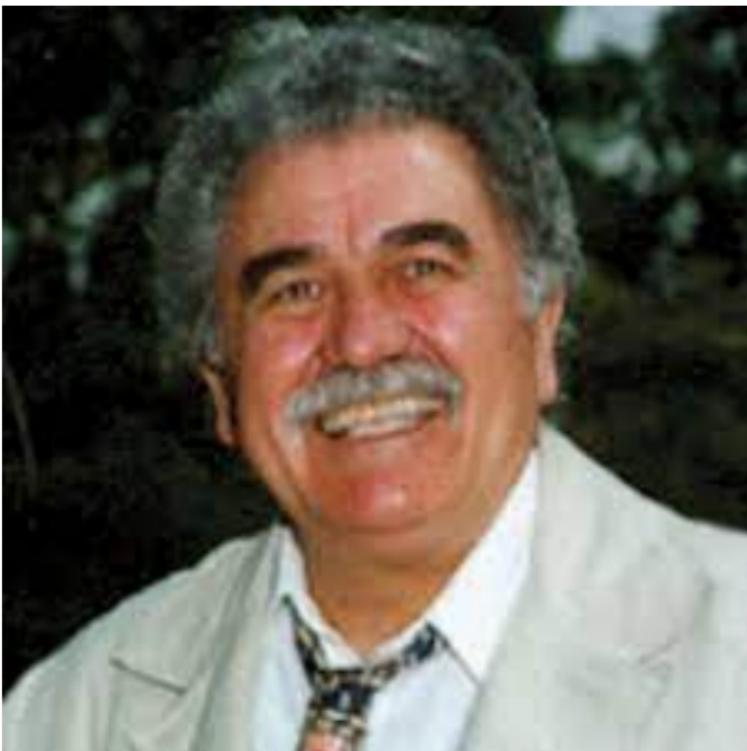
- Definition
- Motivation and history
- the Komlós, Major, Tusnády (KMT) approximation
- Extensions
- Application: Nonparametric density estimation

PROBABILITY AND MATHEMATICAL STATISTICS

A Series of Monographs and Textbooks

**STRONG APPROXIMATIONS IN
PROBABILITY AND STATISTICS**

M. CSÖRGÖ / P. RÉVÉSZ



Definitions

Wiener processes

A Gaussian process $\{W(y); 0 \leq y \leq \infty, \}$ if $EW(y) = 0$ and $EW(y_1)W(y_2) = y_1 \wedge y_2$

Brownian bridge

A Gaussian process $\{B(y); 0 \leq y \leq 1, \}$ is called a Brownian bridge if $EB(y) = 0$ and $EB(y_1)B(y_2) = y_1 \wedge y_2 - y_1 \cdot y_2$

- $B(0) = B(1) = 0$

Kiefer process

A centered Gaussian process $\{K(y, t); 0 < y < 1, 0 < t < \infty\}$ with covariance function $E(K(s, t)K(s, t)) = (t \wedge t')(s \wedge s' - ss')$

Definition

Strong approximations (strong invariance principle)

- Wiener approximation for the partial sums of i.i.d. random variables

$$S_n = W_n + O(\log n) \quad a.s.$$

- Approximation of the empirical process by a Brownian bridge

Two independent source

- Erdos and Kac (1946), On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. 52 292-302.
- Doob (1949), entitled "Heuristic approach to the Kolmogorov-Smirnov theorems". Ann. Math. Statist. 20 393-403.

First origin

Classical central limit theorem

Let X_1, \dots, X_n i.i.d $\sim F(\cdot)$, $EX_i = 0$, $EX_i^2 = 1$, $S_n = \sum_{i=1}^n X_i$.

Let Y_1, \dots, Y_n i.i.d $\sim N(0, 1)$, $T_n = \sum_{i=1}^n Y_i$

$$P\left(\frac{1}{\sqrt{n}}S_n \leq x\right) \longrightarrow \phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp\{-t^2/2\} dt = P\left(\frac{1}{\sqrt{n}}T_n \leq x\right)$$

$$P\left(\frac{1}{\sqrt{n}}S_n \leq x\right) - P\left(\frac{1}{\sqrt{n}}T_n \leq x\right) \longrightarrow 0$$

- as time goes on, S_n forgets about the distribution function F where it has come from.

Erdos and Kac (1946): (weak) invariance principle

$$G_1(y) = \lim_{n \rightarrow \infty} P\left(n^{-1/2} \max_{1 \leq k \leq n} S_k \leq y\right),$$

$$G_2(y) = \lim_{n \rightarrow \infty} P\left(n^{-1/2} \max_{1 \leq k \leq n} |S_k| \leq y\right),$$

$$G_3(y) = \lim_{n \rightarrow \infty} P\left(n^{-2} \sum_{k=1}^n S_k^2 \leq y\right),$$

$$G_4(y) = \lim_{n \rightarrow \infty} P\left(n^{-3/2} \sum_{k=1}^n |S_k| \leq y\right).$$

- They proved that the limit distributions (i)-(iv) exist and they do not depend on the initial distribution of X_1 . They called this method of proof the **(weak) invariance principle**, and their paper has initiated a new methodology for proving limit laws in probability theory.

Donsker (1951)

$$h(S_n(\cdot)) \xrightarrow{\mathcal{W}} h(W(\cdot))$$

for every continuous functional $h : C(0, 1) \longrightarrow \mathbb{R}$

$$S_n(t) = \frac{1}{\sqrt{n}} \{S_{[nt]} + X_{[nt]+1}(nt - [nt])\}$$

Theorem 0.2*.

$$(0.9^*) \quad \sup_{0 \leq t \leq 1} \frac{|S_n(t) - n^{-1/2}W(nt)|}{\sqrt{\log \log n}} \xrightarrow{\text{a.s.}} 0.$$

Connection

- The precise connection between weak and strong invariance principles was established by Strassen (1965a) (cf. also Dudley (1968) and Wichura (1970)) via the so-called Prohorov distance of probability measures. In fact **these results state a kind of equivalence between these two forms of invariance.**

Second origin

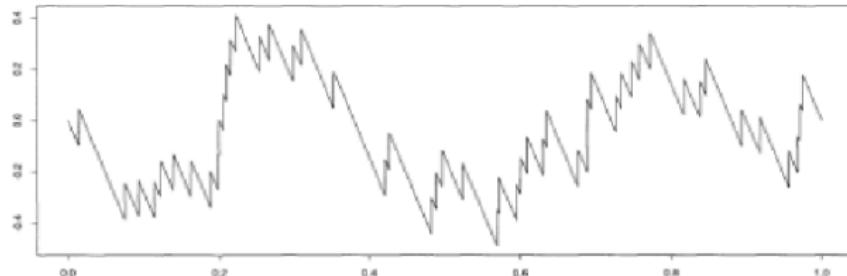
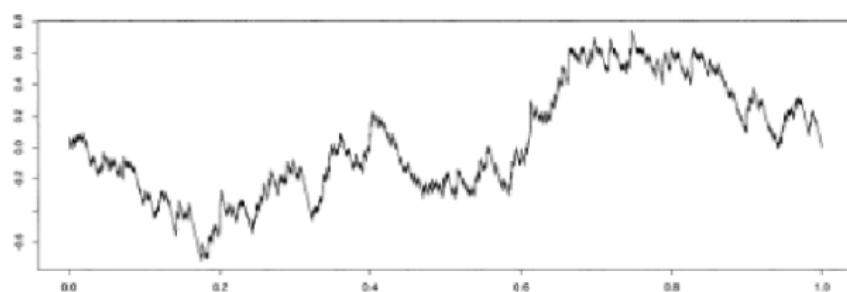
Let U_1, U_2, \dots be independent uniform $(0, 1)$ random variables. Define a uniform empirical distribution function as

$$F_{U,n}(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{U_i \leq t}, \quad t \in [0, 1]$$

Define a **uniform empirical process** as

$$\alpha_n(t) = \sqrt{n} (F_{U,n}(t) - t), \quad t \in [0, 1].$$

Uniform, 50, 500



Second origin

- Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".

Second origin

- Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
- Donsker (1952): $\alpha_n \xrightarrow{\mathcal{W}} B(\cdot)$

Second origin

- Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
- Donsker (1952): $\alpha_n \xrightarrow{\mathcal{W}} B(\cdot)$
- Prohorov (1956) and Skorohod (1956) $h(\alpha_n) \xrightarrow{\mathcal{W}} h(B(\cdot))$

Second origin

- Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
- Donsker (1952): $\alpha_n \xrightarrow{\mathcal{W}} B(\cdot)$
- Prohorov (1956) and Skorohod (1956) $h(\alpha_n) \xrightarrow{\mathcal{W}} h(B(\cdot))$
- Brillinger (1969): first SIP

$$\sup_{0 \leq t \leq 1} |\tilde{\alpha}_n(t) - B_n(t)| = O(n^{-1/4}(\log n)^{1/2}(\log \log n)^{1/4}), \quad a.s.$$

Second origin

- Doob (1949): "Heuristic approach to the Kolmogorov-Smirnov theorems".
- Donsker (1952): $\alpha_n \xrightarrow{\mathcal{W}} B(\cdot)$
- Prohorov (1956) and Skorohod (1956) $h(\alpha_n) \xrightarrow{\mathcal{W}} h(B(\cdot))$
- Brillinger (1969): first SIP

$$\sup_{0 \leq t \leq 1} |\tilde{\alpha}_n(t) - B_n(t)| = O(n^{-1/4}(\log n)^{1/2}(\log \log n)^{1/4}), \quad a.s.$$

- Kiefer (1972).

$$\sup_{0 \leq y \leq 1} |\sqrt{n}\alpha_n(y) - K(y, n)| = O(n^{1/3}(\log n)^{2/3}) \quad a.s.$$

Komlós, Major, Tusnády approximation

- the KMT embedding
- the Hungarian embedding
- Komlós, J., Major, P. Tusnády G. (1975). An approximation of partial sums of independent RV'-s, and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111-131.
- sharp bound for the speed of this weak convergence .

the KMT approximation

Theorem

For EP $\{\alpha_n(t); 0 \leq t \leq 1\}$ there exists a probability space on which one can define a Brownian bridge $\{B_n(t); 0 \leq t \leq 1\}$ for each n and a Kiefer process $\{K(y, t); 0 \leq y \leq 1, t \geq 0\}$ such that

$$P \left\{ \sup_{0 \leq t \leq 1} |\alpha_n(t) - B_n(t)| > \frac{1}{\sqrt{n}} (C \log n + x) \right\} \leq L e^{-\lambda x}$$

$$P \left\{ \sup_{0 \leq k \leq n} \sup_{0 \leq y \leq 1} |k^{1/2} \alpha_k(y) - K(y, k)| > \frac{1}{\sqrt{n}} (C \log n + x) \log n \right\} \leq L e^{-\lambda x}$$

for all $x \in \mathbb{R}$, where C, L and λ are positive constants

Corollary

$$\sup_{0 \leq t \leq 1} |\alpha_n(t) - B_n(t)| = O\left(\frac{\ln n}{\sqrt{n}}\right), \quad a.s.$$

$$\sup_{0 \leq y \leq 1} |\alpha_n(y) - K(y, n)/n^{1/2}| = O\left(\frac{(\ln n)^2}{\sqrt{n}}\right), \quad a.s.$$

Corollary

$$\sup_{0 \leq t \leq 1} |\alpha_n(t) - B_n(t)| = O\left(\frac{\ln n}{\sqrt{n}}\right), \quad a.s.$$

$$\sup_{0 \leq y \leq 1} |\alpha_n(y) - K(y, n)/n^{1/2}| = O\left(\frac{(\ln n)^2}{\sqrt{n}}\right), \quad a.s.$$

- Bretagnolle and Massart (1989) provided explicit constants $C = 12, L = 2, \lambda = 1/6$.

Results

- **Weak limit theorems**, as Donsker's invariance principle for the empirical distribution function

Results

- **Weak limit theorems**, as Donsker's invariance principle for the empirical distribution function
- **Almost sure results**, as the functional form of the law of the iterated logarithm

Results

- **Weak limit theorems**, as Donsker's invariance principle for the empirical distribution function
- **Almost sure results**, as the functional form of the law of the iterated logarithm
- **From a statistical point of view**, strong approximations with rates allow to construct many statistical procedures

Extensions

- Berkes and Philipp (1977) : Strong approximations for the empirical process with dependent data (strongly mixing),
- Kuelbs (1973), J. Hoffman-Jorgensen-G. Pisier (1976), Garling (1976): higher dimensional Euclidean space or a Banach space
- Random size partial sum
- Csörgő , M. and Revesz , P. (1978). Strong approximation of the quantile process. Ann. Statist. 6 882–894
- Burke, Csörgő and Horváth (1981, 1988): Random censorship model strong approximation for the product-limit process $Z_n(t) := \sqrt{n}[\hat{F}_n(t) - F(t)]$.

Applications

- Nonparametric density estimation
- nonparametric regression estimation
- characteristic functions
- mean residual lifetime processes
- empiric total-time-on-test,
- Lorenz, concentration, and related processes

can be approximated by appropriate Gaussian processes.

Application: Nonparametric density estimation

- Let X_1, \dots, X_n iid f , the kernel estimate f_n of f introduced by [Rosenblatt \(1956\)](#) and defined by

$$f_n(t) = \sum_{i=1}^n \frac{1}{nh_n} K\left(\frac{t-X_i}{h_n}\right) = \frac{1}{h_n} \int_0^\infty K\left(\frac{t-s}{h_n}\right) dF_n(s),$$

K is a kernel function, and h_n is a sequence of (positive) “bandwidths” tending to zero as $n \rightarrow \infty$.

Application: Nonparametric density estimation

- Parzen (1962): consistent estimator
- Nadaraya (1965), Schuster (1969) and Van Ryzin (1969): The weak and strong uniform consistency properties of f_n . Condition placed on the bandwidth for strong uniform consistency include $\sum \exp(-cnh_n^2) < \infty$ for all positive c .
- Bickel and Rosenblatt (1971) : **strong approximation**(Brillinger (1969)) predate the development of the KMT approximation,
- Revesz (1976b) and Rosenblatt (1976) used the **KMT approximation** to derive asymptotically distribution-free confidence bands for the expected value of $f_n(x)$, improving on the earlier results of Bickel Rosenblatt.
- Silverman (1978): strong uniform consistency for $f_n - f$ using the **KMT approximation**. weak condition

$$\frac{\log n}{nh_n} \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty$$

Nonparametric density estimation

$$\begin{aligned}f_n(t) - Ef_n(t) &= \frac{1}{h_n} \int K\left(\frac{t-s}{h_n}\right) d[F_n(x) - F(x)] \\&= \frac{1}{h_n} \int [F_n(x) - F(x)] dK\left(\frac{t-s}{h_n}\right) \\&\stackrel{a.s.}{=} -\frac{1}{\sqrt{n}} \int_0^\infty B_n(F(x)) dK\left(\frac{t-s}{h_n}\right) + O\left(\frac{\log n}{nh_n}\right)\end{aligned}$$

Random Censorship Model

- Blum and Susarla (1980):

$$f_n(t) = \frac{1}{h_n} \int_0^\infty K\left(\frac{t-s}{h_n}\right) d\hat{F}_n(s), \quad (1)$$

- The properties of the kernel estimator f_n have been examined by Blum and Susarla (1980), Földes, Rejtö and Winter (1981) and Mielniczuk (1986), among others.
- [Zhang \(1998\)](#) established the strong uniform consistency for $f_n - f$ using the strong approximation technique developed by Burke, Csörgő and Horváth (1981, 1988) for the product-limit process $Z_n(t) := \sqrt{n}[\hat{F}_n(t) - F(t)]$.

Thank you for your attention