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Definitions

Wiener processes
A Gaussian process {W(y); 0 ≤ y ≤ ∞, } if EW(y) = 0 and
EW(y1)W(y2) = y1 ∧ y2

Brownian bridge
A Gaussian process {B(y); 0 ≤ y ≤ 1, } is called a Brownian bridge if EB(y) = 0
and EB(y1)B(y2) = y1 ∧ y2 − y1.y2
• B(0) = B(1) = 0

Kiefer process
A centered Gaussian process {K(y, t); 0 < y < 1, 0 < t < ∞} with covariance
function E(K(s, t)K(s, t)) = (t ∧ t′)(s ∧ s′ − ss′)
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Definition

Strong approximations (strong invariance principle )
• Wiener approximation for the partial sums of i.i.d. random variables

Sn = Wn + O(log n) a.s.
• Approximation of the empirical process by a Brownian bridge
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Motivation and history

Two independent source
• Erdos and Kac (1946), On certain limit theorems of the theory of probability.
Bull. Amer. Math. Soc. 52 292-302.
• Doob (1949), entitled ”Heuristic approach to the Kolmogorov-Smirnov
theorems”. Ann. Math. Statist. 20 393-403.
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First origin

Classical central limit theorem
Let X1, . . . ,Xn i.i.d ∼ F(·),EXi = 0,EX2

i = 1,Sn =
∑n

i=1 Xi.
Let Y1, . . . ,Yn i.i.d ∼ N(0, 1),Tn =

∑n
i=1 Yi

P( 1√
nSn ≤ x) −→ ϕ(x) =

∫ x

−∞

1√
2π

exp{−t2/2}dt = P( 1√
nTn ≤ x)

P( 1√
nSn ≤ x)− P( 1√

nTn ≤ x) −→ 0

• as time goes on, Sn forgets about the distribution function F where it has come
from.
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Erdos and Kac (1946): (weak) invariance principle
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• They proved that the limit distributions (i)-(iv) exist and they do not depend on
the initial distribution of X1. They called this method of proof the (weak)
invariance principle, and their paper has initiated a new methodology for proving
limit laws in probability theory.
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Donsker (1951)

h(Sn(·))
W−→ h(W(·))

for every continuous functional h : C(0, 1) −→ R

Sn(t) =
1√
n{S[nt] + X[nt]+1(nt − [nt])}
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Strassen (1964): new form of the (strong) invariance principle
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Connection

• The precise connection between weak and strong invariance principles was
established by Strassen (1965a) (cf. also Dudley (1968) and Wichura (1970)) via
the so-called Prohorov distance of probability measures. In fact these results state
a kind of equivalence between these two forms of invariance.

A review on the strong Gaussian approximation 13 / 27



Second origin

Let U1,U2, . . . be independent uniform (0, 1) random variables. Define a uniform
empirical distribution function as

FU,n(t) =
1
n

n∑
i=1

1Ui≤t, t ∈ [0, 1]

Define a uniform empirical process as

αn(t) =
√

n (FU,n(t)− t) , t ∈ [0, 1].
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Uniform, 50, 500
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Second origin

• Doob (1949): ”Heuristic approach to the Kolmogorov-Smirnov theorems”.

• Donsker (1952): αn
W−→ B(·)

• Prohorov (1956) and Skorohod (1956) h(αn)
W−→ h(B(·))

• Brillinger (1969): first SIP

sup
0≤t≤1

|α̃n(t)− Bn(t)| = O(n−1/4(log n)1/2(log log n)1/4), a.s.

• Kiefer (1972).

sup
0≤y≤1

|
√

nαn(y)− K(y, n)| = O(n1/3(log n)2/3) a.s.
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Komlós, Major, Tusnády approximation

• the KMT embedding
• the Hungarian embedding
• Komlós, J., Major, P. Tusnády G. (1975). An approximation of partial sums of
independent RV’-s, and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111-131.
• sharp bound for the speed of this weak convergence .
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the KMT approximation

Theorem
For EP {αn(t); 0 ≤ t ≤ 1} there exists a probability space on which one can define
a Brownian bridge {Bn(t); 0 ≤ t ≤ 1} for each n and a Kiefer process
{K(y, t); 0 ≤ y ≤ 1, t ≥ 0} such that

P
{

sup
0≤t≤1

|αn(t)− Bn(t)| >
1√
n (C log n + x)

}
≤ Le−λx

P
{

sup
0≤k≤n

sup
0≤y≤1

|k1/2αk(y)− K(y, k)| > 1√
n (C log n + x) log n

}
≤ Le−λx

for all x ∈ R, where C, L and λ are positive constants
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Corollary

sup
0≤t≤1

|αn(t)− Bn(t)| = O(
ln n√

n ), a.s.

sup
0≤y≤1

|αn(y)− K(y, n)/n1/2| = O(
(ln n)2
√

n ), a.s.

• Bretagnolle and Massart (1989) provided explicit constants
C = 12, L = 2, λ = 1/6.
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Results

• Weak limit theorems, as Donsker’s invariance principle for the empirical
distribution function

• Almost sure results, as the functional form of the law of the iterated logarithm
• From a statistical point of view, strong approximations with rates allow to
construct many statistical procedures
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Extensions

• Berkes and Philipp (1977) : Strong approximations for the empirical process
with dependent data (strongly mixing),
• Kuelbs (1973), J. Hoffman-Jorgensen-G. Pisier (1976), Garling (1976): higher
dimensional Euclidean space or a Banach space
• Random size partial sum
• Csörgő , M. and Revesz , P. (1978). Strong approximation of the quantile
process. Ann. Statist. 6 882–894
• Burke, Csörgő and Horváth (1981, 1988): Random censorship model strong
approximation for the product-limit process Zn(t) :=

√
n[F̂n(t)− F(t)].
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Applications

• Nonparametric density estimation
• nonparametric regression estimation
• characteristic functions
• mean residual lifetime processes
• empiric total-time-on-test,
• Lorenz, concentration, and related processes
can be approximated by appropriate Gaussian processes.
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Application: Nonparametric density estimation

• Let X1, . . . ,Xn iid f, the kernel estimate fn of f introduced by Rosenblatt (1956)
and defined by

fn(t) =
n∑

i=1

1
nhn

K( t − Xi
hn

) =
1
hn

∫ ∞

0
K( t − s

hn
)dFn(s),

K is a kernel function, and hn is a sequence of (positive) “bandwidths” tending to
zero as n → ∞.
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Application: Nonparametric density estimation

• Parzen (1962): consistent estimator
• Nadaraya (1965), Schuster (1969) and Van Ryzin (1969): The weak and strong
uniform consistency properties of fn. Condition placed on the bandwidth for
strong uniform consistency include

∑
exp(−cnhn

2) < ∞ for all positive c.
• Bickel and Rosenblatt (1971) : strong approximation( Brillinger (1969)) predate
the development of the KMT approximation,
• Revesz (1976b) and Rosenblatt (1976) used the KMT approximation to derive
asymptotically distribution-free confidence bands for the expected value of fn(x),
improving on the earlier results of Bickel Rosenblatt.
• Silverman (1978): strong uniform consistency for fn − f using the KMT
approximation. weak condition

log n
nhn

−→ 0 as n −→ ∞
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Nonparametric density estimation

fn(t)− Efn(t) =
1
hn

∫
K( t − s

hn
)d[Fn(x)− F(x)]

=
1
hn

∫
[Fn(x)− F(x)]dK( t − s

hn
)

a.s.
= − 1√

n

∫ ∞

0
Bn(F(x))dK( t − s

hn
) + O

(
log n
nhn

)
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Random Censorship Model

• Blum and Susarla (1980):

fn(t) =
1
hn

∫ ∞

0
K( t − s

hn
)dF̂n(s), (1)

• The properties of the kernel estimator fn have been examined by Blum and
Susarla (1980), Földes, Rejtö and Winter (1981) and Mielniczuk (1986), among
others.
• Zhang (1998) established the strong uniform consistency for fn − f using the
strong approximation technique developed by Burke, Csörgő and Horváth (1981,
1988) for the product-limit process Zn(t) :=

√
n[F̂n(t)− F(t)].
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Thank you for your attention
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