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Introduction

Stable Distribution

The distribution S is stable if for X, X1, Xo, ... & 8,

n
Jen>0MeR 3 Y XL X + A
=i

Domain of Attraction of a Stable Law

The distribution F' € DS(«) if for X, Xo, ... ii.d. F

Jan>0,bh€R > a;t (in—bn> 4,
i=1

where S has a stable distribution with index 0 < o < 2.




Introduction

AR Model

The AR(p) model is defined to be

¢(B)X; = e, (1)
where B is backward operator and
$(z) = L — d1z — $o2® — - — 2P,
Here, we assume that

& "% F,F € DS(a), (2)




Introduction

AR(1) Model
The AR(1) model is defined to be

Xt:¢Xt_1+et,t:2,3,...,n, X():O (3)

If |p| <1 and F € DS(2) then

~

Vial(d— ) 5 N(0,1 - ¢?)
and when ¢ = £1
n(g—1)3U

and U is not Gaussian (result from Anderson). This is also
called Dickey—Fuller unit root test. In here




Introduction

For stock prices if e "*S; = Y; and random walk model is based

on
Y

Yi1

log =€

is equivalent to
logY; =logYi—1 + €

is random walk model where X; = logY;.



M-estimate Method

Con31der the general AR(p) model. The classical M-estimate,
= (¢1, o, . . . ,QSP) of ® = (¢1,2,...,¢p)T minimizes

n

9B, Bp) = Y p(Xi = BiXi1— - — BpXi ),

t=p+1

with respect to (51, ..., 5p).

Assumptions on the function p(-):

Al. let p be a convex and twice differentiable function, and
take ¢ = p'.

A2. E(¢(e1)) = 0 and E(¥?(e1)) < o0

A3. 0 < [E(¢)/(e1))] < oo and '(-) satisfies the Lipschitz-
continuity condition.



Introduction

AR(1) Model with unit root

The AR(1) model is defined to be
Xy = ¢Xi1 + e, (4)

where ¢ = +1. Here, we assume that

e "% F F € DS(a), (5)

The goal is to estimate ¢ to test the unit root hypothesis is
valid. W.L.O.G. we only consider ¢ = 1.



Introduction

Partial Sum Process

If ¢; ‘44 [ and F is in the domain of attraction of a stable law
with index « € (0, 2] then

a,’ Z — ) 5 S(t)

where S; is the stable process with index (0, 2].

For a € (0,1) we can take ¢, = 0 and for a € (1, 2] when

d .
€; = —¢;, we can take ¢, = 0. When a = 2, the process S is
Brownian motion.
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Asymototic theory for ¢y

We have

d E1/2 fo

ann1/2 by — 1
(o — 1) — B () [0 52

and

n e 1/2 X : p E1/2(1l12(€1)) -~
(tz:; t—1> (orr — )HW (1).

V.

Here S is the symmetric stable law with index o € (0,2] and W
is Brownian motion and a,/y/n — co. This shows that
M-estimates derive higher rate of convergance (better estimate
of ¢). (Knight (1989))
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The Limiting Distribution for AR(p)

Characteristic polynomial of AR(p):
l

6(2) = (1 2)" (14 2)° J] (1 — 2cos(60)z + 22)%o(2).
k=1

Note that the roots of equation
1—2cos(0)z+22=0

are zg = exp(if) and zy = exp(—if) and ||zo|| = ||20]| = 1.



The Limiting Distribution for AR(p)

Characteristic polynomial of AR(p):
l

6(2) = (1 2)" (14 2)° J] (1 — 2cos(60)z + 22)%o(2).
k=1

Note that the roots of equation
1—2cos(0)z+22=0

are zg = exp(if) and zy = exp(—if) and ||zo|| = ||20]| = 1.
There exists a nonsingular p x p matrix  (Chan and Wei
(1988)) such that

QX = (utT,vtT,w;gr(l), ... ,WZIF(Z))T ,
where we assume that ¢(z) = 1 and
X = (Xt ooy Xepr1)T,
ug = (u, ..., u—ps1)’, w = ¢(B)(1— B) "Xy,
ve = (v, ..., U—s+1)", ve = ¢(B)(1+ B)° Xy,
wi (k) = (we(k), ..., we—og +1(k)T,



The Limiting Distribution for AR(p)

Moreover, let
G,, = diag (Jp, Ky, Lp(1),...,Ly(1)).
Then, we have

GnQXt = diag (Jnut7 Knvta Ln(l)wt(l)v ce 7Ln(l)wt(l)) + O;D(l)'



The Limiting Distribution for AR(p)

Theorem 1
Suppose {X;} satisfies (4) and conditions A1-A3 hold. Then

QTG (@ -®) &

(AT, (7 1)T, (A6, ..., (AT 'G)T) T,

where (T1F), (Y~'H), and (A;'G;) for i = 1,...,1 are pretty
complex and are defined in the paper.




Simulation Study

Consider the model X; = (2cos0)X;—1 — X¢—2 + €. This is in
fact a deterministic process

Y; = Acos(wt)+Bsin(wt), A independent from B and w is a constant,

added with noise.

84

........

........

Figure 1: Different sample paths for this model when o« = 1.3 and
n = 500.



Simulation Study

Table 1: Median and 90% IPR (in parentheses) for [¢; — 2 cos 6| in
model (??) by the M-estimate method using the Huber loss function

Index of stability «

n 0.5 1 1.7 2

10 0.0258(0.4141) 0.1170(0.4097) 0.1839(0.4003)  0.1947(0.3961)
30 0.0009(0.0245) 0.0180(0.1367) 0.0444(0.2133)  0.0538(0.2323)
50  0.0002(0.0063) 0.0083(0.0584) 0.0263(0.1278)  0.0318(0.1396)

Table 2: Median and 90% IPR (in parentheses) for [¢; — 2 cos 6| in

model (??7) by the LS estimate method

Index of stability «

n 0.5 1.0 1.7 2.0

10 0.0806(1.6076) 0.1351(0.7979) 0.1858(0.6077)  0.1992(0.5757)
30 0.0185(0.1748) 0.0349(0.1742) 0.0482(0.1788)  0.0526(0.1879)
50  0.0106(0.0964) 0.0202(0.1056) 0.0290(0.1078)  0.0312(0.1138)




Bootstrap simulation study

(QTGL) (& —d) &
(O AT, (e 1) (A6, (A e )

in probability.

Table 3: Coverage for the naive 95% bootstrap confidence interval for
¢1 in model Xy =2cosbX;_1 — X¢_o+ €

«@ 1.3 1.7

n 50 100 200 50 100 200
m = n/In(In(n)) 96.1% 96.5% 97.4% 95.1% 96.5% 96.8%
m = n(0-9 97.2% 97.4% 97.7% 96.6% 96.9%  97.4%
m = n(0-95) 95.7%  96.6%  96.3% 94.0% 94.8%  94.8%
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AR Models with a Location Parameter

Consider the following AR(p) process
Xe=p+n1Xe 1+ +0pXe pte, t=12,....,n, (6)

where {¢,} € DS(«) and p is the location parameter (mean
when 1 < a < 2).



Mean Estimation

Consider the model
Xi:“+ei7i:17"'7na (7)

where
(] Xz = (Xi17°"aX’ip),a 1= 1,...,n
o p=(pu1,- -, p1p)
o {&} ={(ei,-.., €)'} form sequences of i.i.d. random
vectors with zero mean in DS(ay, ..., ap) where a; € (1,2],
forj=1,...,p.



e X,, — p with the rate of convergence na, ! where
an =n~Y*L(n) and L is a slowly varying functions at oco.



Motivation

e X,, — p with the rate of convergence na_ ! where
an =n~"*L(n) and L is a slowly varying functions at oo.
o Robust estimator for the Mean Vector: the M-estimate,
ftyr, of p minimizes

n

> (0 (Xi— ) —ple)),

i=1

where errors are in DS with possibly different indices of
stability in (1,2].



Motivation

e X,, — p with the rate of convergence na_ ! where
an =n~"*L(n) and L is a slowly varying functions at oo.
o Robust estimator for the Mean Vector: the M-estimate,
ftyr, of p minimizes

n

> (0 (Xi— ) —ple)),

i=1

where errors are in DS with possibly different indices of
stability in (1,2].

For the multivariate loss function use

p(x1,. . ap) = p1 (1) + -+ pp (xp) .



Robust Estimator for the Mean Vector

Theorem 2

Suppose (7) holds. Let fi;; be the M-estimator of the mean
vector for a sequence of i.i.d. observations in the domain of
attraction of a stable law with indices of stability (ou,...,ap)
such that 1 < a; <2, j=1,...,p. Then, we have

N d
W, = vty —p) = W, (8)
where W has a multivariate normal distribution with mean zero
: : — i E[(41(€11))?] E[(¥p(€1p))?]
and covariance matrix ¥ = diag B ) Bl en)

e ma— L .
Remark: na, " < \/n.



M-estimates of the parameters in AR(2) with a

Location Parameter

Consider the model

Xt =4+ 2Xt_1 — Xt_Q + €. (9)

2e+07 3e+07 4e+07
I I I

1e+07

Oe+00
I
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Differencing the time series 2 times



Simulation Study

Table 4: M-estimates of the parameters in model (9) with sample size
n = 100 and replication size 10, 000

n =20 n = 100
o P1 P2 © ¢1 P2 L
0.5 1.9811 -0.9796 4.2711 1.9999 -0.9999 4.0105
1.0 1.9588 -0.9552 4.5645 1.9983 -0.9982 4.1414
1.5 1.9635 -0.9596 4.5279 1.9982 -0.9981 4.1504
1.8 1.9716 -0.9686 4.4169 1.9986 -0.9986 4.1122
2.0 1.9759 -0.9733 4.3496 1.9989 -0.9989 4.0934




Thanks!



Some extras

@ In the stationary time series if {e;} are i.i.d. with all moments
(Mann and Wald (1943))

Vin(®rs — ®) % N(0,%).
o For random walk Model:
o when {e} ~ N(0,0%) (White (1985))
W2(1) -1
2f01 W2(s)ds’
where W (-) is a standard Brownian-motion process.
o when {¢:} € DS(a) (Chan and Tran (1989))
) S52(1)-v(Q
n(érs — 1) 4 M7
2 [, S%(s)ds
where S(-) and V(-) are stable processes. Knight (1989)
proves that

n((;ASLS—l) -

2y ey 4 B2 (2(@) Jy S@dW(t)
7L(¢M 1)—> E(’l/Jl(El)) f0152(t)dt




o If {¢,} € DS(a) and stationary AR model (Davis, Knight Liu
(1992))

an(Par — @) 4% to some random vector '3

@ Unstable AR(2) model with double root 1 (Chan and Zhang
(2012))

( n(drs1 —2)

) i> to some random vector &
n*(¢rs1 —2) +n*(drse +1) ?

@ Unstable AR(2) model with double root 1 by M-estimate method

n1/2an(¢3M1 - 2)

d
. . % to some random vector
( n32a, (drr — 2) + 0 2an (dar2 + 1) ) &
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