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Introduction

Stable Distribution

The distribution S is stable if for X,X1, X2, . . .
i.i.d.∼ S,

∃ cn > 0, λn ∈ R 3
n∑
i=1

Xi
d
= cnX + λn.

Domain of Attraction of a Stable Law

The distribution F ∈ DS(α) if for X1, X2, . . .
i.i.d.∼ F ,

∃ an > 0, bn ∈ R 3 a−1n

(
n∑
i=1

Xi − bn

)
d→ S,

where S has a stable distribution with index 0 < α ≤ 2.



Introduction

AR Model

The AR(p) model is defined to be

φ(B)Xt = εt, (1)

where B is backward operator and

φ(z) = 1− φ1z − φ2z2 − · · · − φpzp.

Here, we assume that

εt
i.i.d.∼ F, F ∈ DS(α), (2)



Introduction

AR(1) Model

The AR(1) model is defined to be

Xt = φXt−1 + εt, t = 2, 3, . . . , n, X0 = 0 (3)

If |φ| < 1 and F ∈ DS(2) then

√
n(φ̂− φ)

d→ N(0, 1− φ2)

and when φ = ±1

n(φ̂− 1)
d→ U

and U is not Gaussian (result from Anderson). This is also
called Dickey–Fuller unit root test. In here

φ̂ =

∑n
t=2XtXt−1∑n
t=2X

2
t−1

.



Introduction

For stock prices if e−rtSt = Yt and random walk model is based
on

log
Yt
Yt−1

= εt

is equivalent to
log Yt = log Yt−1 + εt

is random walk model where Xt = log Yt.



M-estimate Method

Consider the general AR(p) model. The classical M-estimate,
Φ̂ = (φ̂1, φ̂2, . . . , φ̂p)

T , of Φ = (φ1, φ2, . . . , φp)
T minimizes

g(β1, · · · , βp) =

n∑
t=p+1

ρ(Xt − β1Xt−1 − · · · − βpXt−p),

with respect to (β1, . . . , βp).

Assumptions on the function ρ(·):
A1. let ρ be a convex and twice differentiable function, and

take ψ = ρ′.

A2. E(ψ(ε1)) = 0 and E(ψ2(ε1)) <∞.

A3. 0 < |E(ψ′(ε1))| <∞ and ψ′(·) satisfies the Lipschitz-
continuity condition.



Introduction

AR(1) Model with unit root

The AR(1) model is defined to be

Xt = φXt−1 + εt, (4)

where φ = ±1. Here, we assume that

εt
i.i.d.∼ F, F ∈ DS(α), (5)

The goal is to estimate φ to test the unit root hypothesis is
valid. W.L.O.G. we only consider φ = 1.



Introduction

Partial Sum Process

If εi
i.i.d.∼ F and F is in the domain of attraction of a stable law

with index α ∈ (0, 2] then

a−1n

[nt]∑
i=1

(εi − cn)
d→ S(t)

where St is the stable process with index (0, 2].

For α ∈ (0, 1) we can take cn = 0 and for α ∈ (1, 2] when

εi
d
= −εi, we can take cn = 0. When α = 2, the process S is

Brownian motion.
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Asymototic theory for φ̂M

We have

ann
1/2(φ̂M − 1)

d−→
E1/2(ψ2(ε1))

∫ 1
0 S(s) dW (s)

E(ψ′(ε1))
∫ 1
0 S

2(s) ds

and (
n∑
t=2

X2
t−1

)1/2

(φ̂M − 1)
d−→ E1/2(ψ2(ε1))

E(ψ′(ε1))
W (1).

Here S is the symmetric stable law with index α ∈ (0, 2] and W
is Brownian motion and an/

√
n→∞. This shows that

M-estimates derive higher rate of convergance (better estimate
of φ). (Knight (1989))
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The Limiting Distribution for AR(p)

Characteristic polynomial of AR(p):

φ(z) = (1− z)r(1 + z)s
l∏

k=1

(1− 2 cos(θk)z + z2)dkϕ(z).

Note that the roots of equation

1− 2 cos(θ)z + z2 = 0

are z0 = exp(iθ) and z̄0 = exp(−iθ) and ||z0|| = ||z̄0|| = 1.

There exists a nonsingular p× p matrix Q (Chan and Wei
(1988)) such that

QXt =
(
uTt ,v

T
t ,w

T
t (1), . . . ,wT

t (l)
)T
,

where we assume that ϕ(z) = 1 and

Xt = (Xt, . . . , Xt−p+1)
T ,

ut = (ut, . . . , ut−r+1)
T , ut = φ(B)(1−B)−rXt,

vt = (vt, . . . , vt−s+1)
T , vt = φ(B)(1 +B)−sXt,

wt(k) = (wt(k), . . . , wt−2dk+1(k))T ,

wt(k) = φ(B)(1− 2 cos(θk)B +B2)−dkXt

for k = 1, 2, . . . , l.
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The Limiting Distribution for AR(p)

Moreover, let

Gn = diag (Jn,Kn, Ln(1), . . . , Ln(l)) .

Then, we have

GnQXt = diag (Jnut,Knvt, Ln(1)wt(1), . . . , Ln(l)wt(l)) + op(1).



The Limiting Distribution for AR(p)

Theorem 1

Suppose {Xt} satisfies (4) and conditions A1-A3 hold. Then(
QTGTn

)−1
(Φ̂− Φ)

d→(
(Γ−1F)T , (Υ−1H)T , (Λ−11 G1)

T , . . . , (Λ−1l Gl)
T
)T
,

where (Γ−1F), (Υ−1H), and (Λ−1i Gi) for i = 1, . . . , l are pretty
complex and are defined in the paper.



Simulation Study

Consider the model Xt = (2 cos θ)Xt−1 −Xt−2 + εt. This is in
fact a deterministic process

Yt = A cos(ωt)+B sin(ωt), A independent fromB and ω is a constant,

added with noise.

Figure 1: Different sample paths for this model when α = 1.3 and
n = 500.



Simulation Study

Table 1: Median and 90% IPR (in parentheses) for |φ̂1 − 2 cos θ| in
model (??) by the M-estimate method using the Huber loss function

Index of stability α
n 0.5 1 1.7 2
10 0.0258(0.4141) 0.1170(0.4097) 0.1839(0.4003) 0.1947(0.3961)
30 0.0009(0.0245) 0.0180(0.1367) 0.0444(0.2133) 0.0538(0.2323)
50 0.0002(0.0063) 0.0083(0.0584) 0.0263(0.1278) 0.0318(0.1396)

Table 2: Median and 90% IPR (in parentheses) for |φ̂1 − 2 cos θ| in
model (??) by the LS estimate method

Index of stability α
n 0.5 1.0 1.7 2.0
10 0.0806(1.6076) 0.1351(0.7979) 0.1858(0.6077) 0.1992(0.5757)
30 0.0185(0.1748) 0.0349(0.1742) 0.0482(0.1788) 0.0526(0.1879)
50 0.0106(0.0964) 0.0202(0.1056) 0.0290(0.1078) 0.0312(0.1138)



Bootstrap simulation study

(
QTGTm

)−1
(Φ̂∗ − Φ̂)

d→(
(Γ−1F)T , (Υ−1H)T , (Λ−11 G1)

T , . . . , (Λ−1l Gl)
T
)T
,

in probability.

Table 3: Coverage for the naive 95% bootstrap confidence interval for
φ1 in model Xt = 2 cos θXt−1 −Xt−2 + εt

α 1.3 1.7
n 50 100 200 50 100 200
m = n/ ln(ln(n)) 96.1% 96.5% 97.4% 95.1% 96.5% 96.8%

m = n(0.9) 97.2% 97.4% 97.7% 96.6% 96.9% 97.4%

m = n(0.95) 95.7% 96.6% 96.3% 94.0% 94.8% 94.8%
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AR Models with a Location Parameter

Consider the following AR(p) process

Xt = µ+ φ1Xt−1 + · · ·+ φpXt−p + εt, t = 1, 2, . . . , n, (6)

where {εt} ∈ DS(α) and µ is the location parameter (mean
when 1 < α ≤ 2).



Mean Estimation

Consider the model

Xi = µ + εi, i = 1, . . . , n, (7)

where

Xi = (Xi1, . . . , Xip)
′, i = 1, . . . , n

µ = (µ1, . . . , µp)
′

{εi} = {(εi1, . . . , εip)′} form sequences of i.i.d. random
vectors with zero mean in DS(α1, . . . , αp) where αj ∈ (1, 2],
for j = 1, . . . , p.



Motivation

X̄n → µ with the rate of convergence na−1n where
an = n−1/αL(n) and L is a slowly varying functions at ∞.

Robust estimator for the Mean Vector: the M-estimate,
µ̂M , of µ minimizes

n∑
i=1

(ρ (Xi − µ)− ρ (εi)) ,

where errors are in DS with possibly different indices of
stability in (1, 2].

For the multivariate loss function use

ρ (x1, . . . , xp) = ρ1 (x1) + · · ·+ ρp (xp) .
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Robust Estimator for the Mean Vector

Theorem 2

Suppose (7) holds. Let µ̂M be the M-estimator of the mean
vector for a sequence of i.i.d. observations in the domain of
attraction of a stable law with indices of stability (α1, . . . , αp)
such that 1 < αj ≤ 2, j = 1, . . . , p. Then, we have

Wn =
√
n(µ̂M − µ)

d→W, (8)

where W has a multivariate normal distribution with mean zero

and covariance matrix Σ = diag

(
E[(ψ1(ε11))2]

E2(ψ
′
1(ε11))

, . . . ,
E[(ψp(ε1p))2]

E2(ψ′
p(ε1p))

)
.

Remark: na−1n ≤
√
n.



M-estimates of the parameters in AR(2) with a
Location Parameter

Consider the model

Xt = 4 + 2Xt−1 −Xt−2 + εt. (9)



Simulation Study

Table 4: M-estimates of the parameters in model (9) with sample size
n = 100 and replication size 10, 000

n = 20 n = 100
α φ1 φ2 µ φ1 φ2 µ

0.5 1.9811 -0.9796 4.2711 1.9999 -0.9999 4.0105
1.0 1.9588 -0.9552 4.5645 1.9983 -0.9982 4.1414
1.5 1.9635 -0.9596 4.5279 1.9982 -0.9981 4.1504
1.8 1.9716 -0.9686 4.4169 1.9986 -0.9986 4.1122
2.0 1.9759 -0.9733 4.3496 1.9989 -0.9989 4.0934



Thanks!



Some extras

In the stationary time series if {εt} are i.i.d. with all moments
(Mann and Wald (1943))

√
n(Φ̂LS − Φ)

d→ N(0,Σ).

For random walk Model:

when {εt} ∼ N(0, σ2) (White (1985))

n(φ̂LS − 1)
d→ τ =

W 2(1)− 1

2
∫ 1

0
W 2(s)ds

,

where W (·) is a standard Brownian-motion process.
when {εt} ∈ DS(α) (Chan and Tran (1989))

n(φ̂LS − 1)
d→ S2(1)− V (1)

2
∫ 1

0
S2(s)ds

,

where S(·) and V (·) are stable processes. Knight (1989)
proves that

n1/2an(φ̂M − 1)
d→
E

1
2

(
ψ2(ε1)

)
E (ψ′(ε1))

∫ 1

0
S(t)dW (t)∫ 1

0
S2(t)dt



If {εt} ∈ DS(α) and stationary AR model (Davis, Knight Liu
(1992))

an(Φ̂M − Φ)
d→ to some random vector ξ1

Unstable AR(2) model with double root 1 (Chan and Zhang
(2012))(

n(φ̂LS1 − 2)

n2(φ̂LS1 − 2) + n2(φ̂LS2 + 1)

)
d→ to some random vector ξ2

Unstable AR(2) model with double root 1 by M-estimate method(
n1/2an(φ̂M1 − 2)

n3/2an(φ̂M1 − 2) + n3/2an(φ̂M2 + 1)

)
d→ to some random vector ξ3
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