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Heavy-Tailed Stable Distributions

Definition
A random variable X is stable if and only if φU (t) as follows

φU (t) =


exp

{
−γα|t |α

[
1 − iβ

(
tan πα

2

)
(sign t)

]
+ iδt

}
; α ̸= 1,

exp
{
−γ |t |

[
1 + iβ 2

π (sign t) log |t |
]
+ iδt

}
; α = 1,

where 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, δ ∈ R.
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Truncated Regression
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Tail index and Mean
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Figure: Mean of random samples from stable distribution in 1000
iterations with sample size n = 100.
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Tail index and Standard Deviation
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Figure: Standard deviation of random samples from stable
distribution in 1000 iterations with sample size n = 100.
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Order Statistics Moments

Theorem

Let X1, . . . ,Xn be a random sample from non-Gaussian
standard stable distribution and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be its

corresponding order statistics. Take c =
2
α

and d = n + 1 − 2
α

.

(I) Suppose −1 < β < 1. In order that E
(
X 2

k :n

)
exists, it is

necessary and sufficient that c < k < d.

(II) Suppose α ≥ 1 and β = 1 or β = −1 so that E
(
X 2

k :n

)
exists,

then it is sufficient that c < k < d.

(III) Suppose α < 1 and β = 1 or β = −1. In order that E
(
X 2

k :n

)
exists, it is necessary and sufficient that k < d or c < k,
respectively.
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Regression

Consider the standard regression model

Yij = θxi + Uij ; i = 1, . . . ,n , j = 1, . . .m,

where Yij is dependent variable (or response variable) with m
replication, xi is independent variable (or predictor variable), θ
is an unknown parameter and Uij ’s are independent identically
distributed random variables.



Preliminaries RSS MLOS TLS BLUE Simulation Study Multivariate Conclusion

Preliminaries

Regression with Stable Errors, Blattberg and Sargent Method

Blattberg and Sargent (1971) use another method (except
OLS) for estimating θ with stable’s errors when β = 0. They
show that the Best Linear Unbiased Estimator (BLUE) of θ has
the following form:

θ̂ (α) =

n∑
i=1

m∑
j=1

|Xi |
1

α−1 sign (xi)Yij

n∑
i=1

|Xi |
α

α−1

, 1 < α < 2.
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Ranked Set Sampling

Table: Display of m random sample for constructing RSS for each xi

V1: Yi,1(1)Yi,1(1)Yi,1(1) Yi,1(2) ... Yi,1(m)

V2: Yi,2(1) Yi,2(2)Yi,2(2)Yi,2(2) ... Yi,2(m)

. . . . .

. . . . .

. . . . .

Vm: Yi,m(1) Yi,m(2) ... Yi,m(m)Yi,m(m)Yi,m(m)

For simplicity, we denoted Yi,j(j) byYi(j).
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BLUE Using Ranked Set Sampling, Dorniani et al.

Theorem
Consider model (1) and Yi(j) be a RSS from S(α,0,1,0)
distribution, Then the BLUE of the θ is given by

θ̃ (α) =
n∑

i=1

c∗ + e∗xi

∆∗

∑
j∈J

Yij

τj
,

c∗= −n

(
n∑

i=1

xi

)∑
j∈J

1
τj

∑
j∈J

η2
j

τj

 ,

e∗=n2

∑
j∈J

1
τj

∑
j∈J

η2
j

τj

 ,

∆∗ = n

∑
j∈J

1
τj

2∑
j∈J

η2
j

τj

n
n∑

i=1

x2
i
−

(
n∑

i=1

xi

)2

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Regression

The linear regression model can be written as

yyy = xθxθxθ + ϵϵϵ,

where xxx = (xi,j)n×k is a design matrix, θθθ = (θ1, . . . , θk )
′ are the

regression coefficients and ϵϵϵ = (ϵ1, . . . , ϵn)
′ are independent

and identically distributed random variables. In OLS, ϵi must be
normally distributed, but we assume that ϵi follows a
non-Gaussian stable distribution as U.
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NOR Method

NOR’s method performs an OLS.
Trims 10% of low and high residuals leverages, and
retrieves 80% of observations.
Based on this new data set, they perform a trimmed OLS
fit, and initial values for all parameters are obtained; i.e.,
initial values for regression coefficients and the initial
estimate of the stable parameters, which is considered as
an error term.
Using a numerical optimization, they find the maximum
likelihood estimator of parameters.
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NOR Method

Their method chooses fixed cut-off points so that at least the
lowest and highest 10% of outliers and leverage points are
trimmed without considering the values of the tail index and
skewness of data.
We propose an effective procedure to calculate cut-off points
based on the tail index and skewness parameters.
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Maximum likelihood based on order statistics

According to the above-mentioned Theorem, we propose the
following algorithm

Perform an initial OLS regression and compute residuals.
Compute the MLE of parameters based on residuals.
Use above Theorem and estimated parameters to find the
cut-off points c and d , i.e., the index of order statistics with
finite variance.
Remove ordered residuals with an index less than c or
greater than d and their corresponding values in yyy and xxx .
Perform an OLS regression using this new data.
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Maximum likelihood based on order statistics

Compute MLE of parameters using the following likelihood
function based on order statistics. Use the estimated
coefficients of the previous step for initial values for
numerical optimization:

log
(
fc,...,d (uc , . . . ,ud)

)
= log

(
n!

(c−1)!(n−d)!

)
+ (i − 1) log

(
FU
(
y[c] − θ1 − θ2x[c]

))
+(n − d) log

(
1 − FU

(
y[d ] − θ1 − θ2x[d ]

))
+

d∑
i=c

log
(
fU
(
y[i] − θ1 − θ2x[i]

))
.
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TLS

Trimmed least squares estimator

Using the ordered residuals, we can obtain the trimmed least
squares estimators. Y[1]

...
Y[n]

 =

 1 X[1]1 X[1]2 · · · X[1]k
...

...
...

...
...

1 X[n]1 X[n]2 · · · X[n]k


 θ0

...
θk

+
 U1:n

...
Un:n

 ,

θ̂̂θ̂θ =
(
ZZZ ′ZZZ

)−1ZZZ ′VVV ,

where ZZZ = [111,Z1, . . . ,Zk ], Zi =
(
X[c]i , . . . ,X[d ]i

)′, and
VVV =

(
Y[c], . . . ,Y[d ]

)′.
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TLS

Trimmed least squares estimator

Since, the moment of order statistics are exist, bias and
variance of θ̂̂θ̂θ are calculated as follows:

E
(
θ̂̂θ̂θ
)
= E

(
(ZZZ ′ZZZ )−1ZZZ ′VVV

)
= (ZZZ ′ZZZ )−1ZZZ ′E (ZZZθθθ +UUU t)

= θθθ + (ZZZ ′ZZZ )−1ZZZ ′E (UUU t) ,

Var
(
θ̂̂θ̂θ
)
=
(
ZZZ ′ZZZ

)−1ZZZ ′ΣtZZZ
(
ZZZ ′ZZZ

)−1
,

where UUU t = (Uc:n, . . . ,Ud :n) and Σt are trimmed residual vector
and its covariance matrix, respectively.
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TLS

Trimmed least squares estimator

an unbiased estimator (ULS) for regression coefficients is
proposed as follows

θ̂̂θ̂θu = (ZZZ ′ZZZ )−1ZZZ ′VVV − (ZZZ ′ZZZ )−1ZZZ ′E (UUU t)

= (ZZZ ′ZZZ )−1ZZZ ′ (VVV − E (UUU t)) .
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Best linear unbiased estimator

Let θθθ be a vector of regression coefficients and γ be a linear
combination of θθθ components as follows:

γ = l0θ0 + l1θ1 + · · ·+ lkθk = l ′θl ′θl ′θ,

where lll is a known vector of constant real values. Then
γ̂ = a′Va′Va′V is the best linear unbiased estimator for γ, where

aaa = Σ−1
t ZλZλZλ+Σ−1

t E (UUU t)ηηη,

ηηη = AAA−1(E (UUU t))
′Σ−1

t ZZZ
(
ZZZ ′Σ−1

t ZZZ
)−1

lll ,

λλλ =
(
ZZZ ′Σ−1

t ZZZ
)−1

lll −
(
ZZZ ′Σ−1

t ZZZ
)−1

ZZZ ′Σ−1
t E (UUU t)ηηη,

AAA = (E (UUU t))
′Σ−1

t ZZZ
(
ZZZ ′Σ−1

t ZZZ
)−1

ZZZ ′Σ−1
t E (UUU t)−(E (UUU t))

′Σ−1
t E (UUU t) .
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Simulation study

Figure: Box plot of estimation (top) and their AD (bottom) of
regression coefficients when errors are simulated from S(1.5,0.5).
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Multivariate

The multivariate linear regression model has the form

Y = YΘ+ E

where Y = (Y 1, . . . ,Y m)n×m is the response matrix and
Y k = (Y1k , . . . ,Ynk )

′ is the k -th response vector, X n×(p+1) is a
design matrix, Θ = (θ1, . . . ,θm) is the matrix of regression
coefficients, i.e. θk =

(
θ0k , θ1k , . . . , θpk

)′ is the k -th coefficient
vector, and E = (ϵ1, . . . , ϵm) is the error terms matrix and
ϵi = (ϵ1i , . . . , ϵni)

′ that usually normally distributed, i.e. E has
multivariate normal distribution. In this paper, we assume that
the E has a multivariate stable distribution.
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Algorithm 1.
(1) Perform an initial multivariate OLS regression and compute
residuals.
(2) Sum each row of residual matrix and compute the maximum
likelihood estimator (MLE) of parameters based on it.
(3) Ordered summation of each row, and by using Theorem 1,
find the cut-off points c and d , i.e., the indices of order statistics
with the finite variance.
(4) Remove the ordered residuals with an index less than c or
greater than d and their corresponding values in Y and X .
Trimmed Least Square (TLS), Unbiased Least Square (ULS)
and the Best Linear Unbiased Estimator (BLUE).
(5) Compute the biased and the variance of parameters using
the density function (4).
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Conclusion

Result 1
For estimation of regression coefficients, if the distribution of
error term is symmetric, we prefer MLOS, BLUE, Q(0.5), TLS,
and then NOR method.
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Result 2
In right skewness distributed error, MLOS, TLS, Q(0.5),
and NOR are better than the others, respectively.

In the cases of left skewness distributed errors, we
recommend practitioners to use MLOS, BLUE, NOR, TLS,
and Q(0.5), respectively.
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Result 3
In general, we can say that simulation results show that in most
cases, MLOS and BLUE are better than the other methods.
After this methods, Q(0.5), TLS and then NOR method for
estimation of regression coefficients.
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