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Hello
I met Professor Mandrekar at Michigan State in 1989, he was a caring
mentor with a vibrant research program
We collaborated for many productive and highly fulfilling years, written
joint papers, presented at conferences, and published two books
Mandrekar had broad research interests: measure and ergodic theory,
prediction, vector and operator-valued measures, probability in Banach
spaces, stochastic analysis, filtering, control, Wiener-Itô multiple
integrals, random fields, Gaussian processes, statistics
Participated in more than 40 International Conferences as an invited
speaker at prestigious places such as Strasbourg, Oberwolfach, Banach
Center, Trinity College, Johns Hopkins, Nagoya, IMA, Math. Sci. Inst.
(Cornell), CIMAT (Mexico), ISI (Delhi, Calcutta), NATO- ASI, LUCAC
Conference, IFIP and All India Science Congress.
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Skorokhod, Ogawa, and Itô-Ramer Integrals

Extension of Ogawa integral; Ogawa integral with respect to Gaussian
processes and its relationship to the Skorokhod integral.
Extension of Itô-Ramer integral to Gaussian processes and its
relationship to the Skorokhod integral.
Anticipative stochastic differential equations
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Infinite Dimensional Equations
Two fundamental Problems:

Peano’s Theorem is false in infinite dimensional Banach spaces

Theorem (Peano)
For every continuous function f : R⇥B ! B defined on an open set
V ⇢ R⇥B and for every point (t0, x0) 2 V the Cauchy problem

x
0(t) = f(t, x(t)), x(t0) = x0

has a solution defined on some neighbourhood of t0.

The problem is with compactness. Bounded sets in R are pre-compact,
but a closed unit ball in an infinite dimensional Banach space in not
compact.

Theorem (Godunov, 1973)
Every Banach space, where Peano’s theorem is true is finite dimensional.
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The presence of unbounded operators in differential equations:
The Laplacian

� : W 1,2
!W

1,2

on the Sobolev space (completion of the space of functions with
continuous and square integrable derivatives in the Sobolev L2 norm) is
unbounded.
First, there is no kAk
Then, if xn ! x then perhaps Axn 9 Ax

One must be aware of D(A)
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Partial Diff. Eqs. ! Ordinary1-dim. Diff. Eqs.

Most popular methods:
Solutions using semigroups of operators, mild solutions to semiliear
equations (Peszat, Zabczyk).
Soultions in multi-Hilbertian spaces, e.g. in the dual to a nuclear space
(Itô, Kallianpur).
Variational solutions in a Gelfand triplet (Agmon, Lions, Röckner).
Solutions using Dirichlet forms (Albeverio, Osada (Itô’s prize in 2013))
White noise method (Hida)
Brownian sheet method (Walsh)
Solutions in R

1 (Leha, Ritter)
Rough paths solutions (Friz, Hairer)
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Partial Diff. Eqs. ! Ordinary1-dim. Diff. Eqs.

Example (Heat Equation! Abstract Cauchy Problem)
One-dimensional Heat Equation,
⇢

ut(t, x) = uxx(t, x), t > 0
u(0, x) = '(x), x 2 R )

⇢
du(t)
dt

= �u(t), t > 0
u(0) = ' 2 X

Heat Equation is converted into an Abstract Cauchy Problem in a Banach
space X of bounded, uniformly continuous functions.
(Differentiation (in t) is in the sense of Banach space.)
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Why Semigroups of Operators?

The uniqueness of solutions and the Hughense principle imply that
temperature u

'(t, x) can be calculated for the initial condition ', but also
from an intermediate value u

'(s, x), thus

u
'(t, x) = (G(t)') (x) = G(t� s)u'(s, x) = (G(t� s)G(s)') (x).

and we have a semigroup of operators G(t). For �, it is a Gaussian
semigroup on the Hilbert space L

2 (R)

(G(t)') (x) =

8
>><

>>:

1

(4⇡t)1/2

Z

R
exp

�
�|x� y|

2
/4t

 
'(y) dy, t > 0

'(x), t = 0.
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The infinitesimal generator of this C0 semigroup of contractions is

� =
d
2

dx2

whose domain is
D(�) = W

2,2(R)

What can be done if the Peano Theorem fails?

In the case of semilinear equations

du

dt
(t) = Au(t) +G(u(t)), u(0) = x 2 H

we can salvage the Peano theorem if, for example, the semigroup of operators
generated by A is compact (that is, sets S(t)(Boundedset) have compact
closures).
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Time dependence

An important observation is that, because the operator A does not depend on
time, the operator T (t) transforming the solution u(s) from time s to u(t+ s)
at time (t+ s) does not depend on s.

The importance of this is that the physical laws governing the process
described by the equation are time independent.
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Mild Solutions

In the presence of an external cooling or heating
⇢

du(t)
dt

= �u(t) + f(t), t > 0
u(0) = ' 2 X

)

⇢
du(t)
dt

= Au(t) + f(t), t > 0
u(0) = ' 2 X

a differentiable solution may not exist, even if the initial condition ' 2 D(A)
and the forcing function f is continuous. The mild solution:

u(t) = S(t)'+

Z
t

0
S(t� s)f(s) ds

is a classical solution (continuously differentiable and in D(A)) if, for
example, ' 2 D(A) and the convolution is differentiable (we will see this
later)...
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...but, for example, even if the initial condition u(0) = 0 2 D(A) and

f(t) = S(t)x, for x 2 H, x /2 D(A),

then

u(t) = S(t)0 +

Z
t

0
S(t� s)f(s) ds =

Z
t

0
S(t� s)S(s)x ds

=

Z
t

0
S(t)x ds = tS(t)x

which is not differentiable as

lim
h!0

(t+ h)S(t+ h)x� tS(t)x

h
= tS(t) lim

h!0

S(h)x� x

h
+ S(t)x

and the limit d.n.e.
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How can we interpret mild solutions?

Theorem (Meta-theorem (Peszat, Zabczyk))
Class of weak solutions (in the sense of evaluation on a test function) = Class
of mild solutions.

Definition

A function u(t) is a weak solution to the Abstract Cauchy Problem in a
Hilbert space H (e.g. W 1,2(R) ⇢ L2), if for every h 2 D(A⇤)

hu(t), hiH = hu(0), hiH +

Z
t

0
(hu(s), A⇤

hiH + hf(s), hiH) ds
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First, we can interpret weak solutions as values not at a single point but as
values on neighbourhoods of points.

One can think of a mild solution u(t) as a weak solution of the heat equation,
that is as of a thermometer (mercury column) and the test function h is
thermometer’s shape.

Isn’t it how we (used to) measure temperature?
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Stochastic Equations

The equation is on a filtered probability space (⌦,F , {Ft}t�0 , P )

dX(t) = (AX(t) + F (X(t))) dt+B(X(t)) dWt

+

Z

H\{0}
f(v,X(t)) q(dt, dv) (4.1)

X(0) = ⇠,

K, H - are real separable Hilbert spaces.
� is a Lévy measure
q(ds, dv) = N(ds, dv)(!)� ds�(dv) - compensated Poisson measure
N(ds, dv)(!) � - finite Poisson measure on �-field B(R+ ⇥H\ {0})
(Wt)tT

- Q-Wiener process in K

A generates C0-semigroup {S(t), t � 0} on H ,
Suitable F,B and f .
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Mild Solutions

Definition

A stochastic process {X(t), t  T} na
⇣
⌦,F , {Ft}t�0 , P

⌘
is a mild solution

to (4.1) on [0, T ], if for 0  t  T

(i) X(t) is Ft-measurable,
(ii) {X(t), t  T} is jointly measurable and

R
T

0 E kX(t)k2
H

dt <1,
(iii) na [0, T ] P -a.s.

X(t) = S(t)⇠ +

Z
t

0
S(t� s)F (X(s)) ds+

Z
t

0
S(t� s)B(X(s)) dWs

+

Z
t

0

Z

H\{0}
S(t� s)f(v,X(s)) q(ds, dv)

Exist under the assumptions of linear growth and Liptschiz conditions, ⇠ can
/2 D(A) but needs to be square integrable.

L. Gawarecki ( Kettering University ) Remarks on Partial Stochastic Differential Equations March 16, 2021 17 / 35



Strong Solutions

Definition

A stochastic process {X(t), t  T} on
⇣
⌦,F , {Ft}t�0 , P

⌘
is a strong

solution to equation (4.1) on [0, T ], if for 0  t  T

(i) X(t) is an Ft-measurable process, càdlàg (right continuous with left
limits),
(ii) X(t) 2 D(A), dt⌦ dP -p.n. and

R
T

0 kAX(t)k2
H

dt <1, P -a.s.
(iii) on [0, T ] P -a.s.

X(t) = ⇠ +

Z
t

0
(AX(s) + F (X(s))) ds+

Z
t

0
B(X(s)) dWs

+

Z
t

0

Z

H\{0}
f(v,X(s)) q(ds, dv)

Mild solutions are strong solutions if X(t) 2 D(A).
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Itô Formula.
One-dimensional case:

X(t) = X(0) +

Z
t

0
 (s) ds+

Z
t

0
�(s) dWs

H(t,X(t)) = H (0, X(0)) +

Z
t

0
Hx (s,X(s))�(s) dWs

+

Z
t

0

n
Ht (s,X(s)) +Hx (s,X(s)) (s)

+
1

2
Hxx (s,X(s))�2(s)

o
ds

by Taylor’s formula

dH (t,X(t)) = Ht (t,X(t)) dt+Hx (t,X(t)) ( (t) dt+ �(t) dWt)

+
1

2
Hxx (t,X(t)) ( (t) dt+ �(t) dWt)

2 + ...
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Itô formula.
Multidimensional and infinitely dimensional cases:

X(t) = X(0) +

Z
t

0
 (s) ds+

Z
t

0
�(s) dWs

H(t,X(t)) = H (0, X(0)) +

Z
t

0
hHx (s,X(s)) ,�(s) dWsiH

+

Z
t

0

n
Ht (s,X(s)) + hHx (s,X(s)) , (s)i

H

+
1

2
tr
h
Hxx (s,X(s))

⇣
�(s)Q1/2

⌘⇣
�(s)Q1/2

⌘⇤io
ds

= H (0, X(0)) +

Z
t

0
hHx (s,X(s)) ,�(s) dWsiH

+

Z
t

0

n
Ht (s,X(s)) + LH (s,X(s))

o
ds

multiplication is replaced by a scalar product and the square by a trace of an
operator composed with its adjoint (Q is the covariance operator).
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Itô formula.
Compensated Poisson measure - infinite dimensional case (specific case,
useful for solutions of SDE’s):

X(t) =

Z
t

0

Z

H\{0}
f(v, s)q(ds dv)

H(t,X(t)) = H (0, X(0)) +

Z
t

0
Ht(s,X(s)) ds

+

Z
t

0

Z

H\{0}

n
H (s,X(s) + f(v, s))

�H(s,X(s))
o
q(dv ds)

+

Z
t

0

Z

H\{0}

n
H(s,X(s) + f(v, s))�H(s,X(s))

�hHx(s,X(s)), f(v, s)iH
o
�(dv) ds
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Itô Formula for Strong Solutions.

H(t,X(t)) = H(0, X(0)) +

Z
t

0
(Hs(s,X(s)) + LH(s,X(s))) ds

+

Z
t

0
hHx(s,X(s)), B(X(s)) dWsiH

+

Z
t

0

Z

H\{0}

h
H(s,X(s) + f(v,X(s)))

�H(s,X(s))
i
q(dv, ds),

LH(s, x) = hHx(s, x), Ax+ F (x)i
H

+
1

2
tr(Hxx(s, x)B(x)Q(B(x))⇤)

+

Z

H\{0}

h
H(s, x+ f(v, x))�H(s, x)

�hHx(s, x), f(v, x)iH

i
�(dv).
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Approximating Mild Solutions

For n 2 ⇢(A) (the resolvent set), R(n,A) = (nI �A)�1 is the resolvent,

An = AnR(n,A) 2 L(H) Yosida approximation of the operator A

Formally: A n

n�A
= A

1
1�A/n

! A, but only:

lim
n!1

nR(n,A)x = x, x 2 H, and lim
n!1

Anx = Ax, x 2 D

One method: replace an unbounded with a bounded operator and keep the
initial condition in H and use the same coefficients

dXn(t) = (AnXn(t) + F (Xn(t))) dt+B(Xn(t)) dWt

+

Z

H\{0}
f(v,Xn(t)) q(dt, dv)

X(0) = ⇠ 2 H
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Approximating Mild Solutions
Another method: Change the initial condition but keep the unbounded
operator A and use Rn = nR(n,A)

������!
formally I

dXn(t) = (AXn(t) +RnF (Xn(t))) dt+RnB(Xn(t)) dWt

+

Z

H\{0}
Rnf(v,Xn(t)) q(dt, dv)

X(0) = ⇠ 2 D(A)

In both cases the solution is strong strong, as either the operator is bounded or
all convolutions are in D(A).
If we keep A, the counterpart of L is

LnH(s, x) = hHx(s, x), Ax+RnF (x)i
H

+
1

2
tr(Hxx(s, x)RnB(x)Q(RnB(x))⇤)

+

Z

H\{0}

h
H(s, x+Rnf(v, x))�H(s, x)

�hHx(s, x), Rnf(v, x)iH

i
�(dv).
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Itô Formula (or Method)for Mild Solutions.

lim
n!1

Z
t

0
hHx(s,Xn(s)), AXn(s)iH ds = H(t,X(t))�H(0, X(0))

�

Z
t

0
Hs(s,X(s)) ds�

Z
t

0
hHx(s,X(s)), F (X(s))i

H
ds

�

Z
t

0

1

2
tr(Hxx(s,X(s))(B(X(s)))Q(B(X(s)))⇤) ds

�

Z
t

0

Z

H\{0}

h
H(s,X(s) + f(v,X(s)))�H(s,X(s))

�hHx(s,X(s)), f(v,X(s))i
H

i
�(dv)ds

�

Z
t

0
hHx(s,X(s)), B(X(s)) dWsiH

�

Z
t

0

Z

H\{0}
[H(s,X(s) + f(v,X(s)))�H(s,X(s))] q(dv, ds).
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Itô Method for Mild Solutions.

From the proof, we obtain this important property (we will use this soon)

lim
n!1

|LH (t,Xn(t))� LnH (t,Xn(t))| = 0, P � a.s.

L contains the unbounded operator A (but is evaluated in Xn(t) 2 D(A), and
Ln uses Rn.
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Itô Method for Mild Solutions.

Exponential stability in the mean square sense.

E kX
x(t)k2

H
 ce

��t
kxk

2
H , c, � > 0

Meta-Theorem: For mild solutions, existence of a Lapunov function is a
sufficient condition for this form of stability

⇤ : H ! R 2 C
2(H), t � 0, x 2 H

c1kxk
2
H  ⇤(x)  c2kxk

2
H , c1, c2 > 0

L⇤(x)  �c3⇤(x), for all x 2 D(A), c3 > 0.
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Itô-Yosida Method for Mild Solutions.
Proof
We use the Itô formula for Yosida approximations (strong solutions) Xn(t)
and function e

c3t⇤(x) and apply the expected value. For the initial condition
x 2 D(A)

e
c3tE⇤ (Xn(t))� ⇤ (x) = E

Z
t

0
e
c3s (c3⇤ (Xn(s)) + Ln⇤ (Xn(s))) ds

From the properties of Lapunov function

c3⇤ (Xn(s)) + Ln⇤ (Xn(s))  �L⇤ (Xn(s)) + Ln⇤ (Xn(s))

hence

e
c3tE⇤ (Xn(t))� ⇤ (Xn(0))  E

Z
t

0
e
c3s (�L⇤ (Xn(s)) + Ln⇤ (Xn(s))) ds

from the Itô method, the integral goes to zero, thus

E⇤(X(t)) E⇤(Xn(t))  e
�c3t⇤(x)

and simple manipulations lead to stability.
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Itô-Yosida Method for Mild Solutions.

Exponential ultimate boundedness in the mean square sense.

E kX
x(t)k2

H
 ce

��t
kxk

2
H +M, c, �,M > 0

For mild solutions, it suffices that a Lapunov function exists

⇤ : H ! R 2 C
2(H), t � 0, x 2 H

c1kxk
2
H � k1  ⇤(x)  c2kxk

2
H � k2, c1, c2, k1, k2 > 0

L⇤(x)  �c3⇤(x) + k3, for all x 2 D(A), c3, k3 > 0.

Similar proof as of exponential stability.
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Example - Stochastic Heat Equation

dX(x, t) =
@
2

@x2
X(x, t) dt+ �X(x, t) dWt +

Z

H\{0}
f(v)X(x, t) q(dv, dt).

x 2 (0, 1), X(0, t) = X(1, t) = 0, X(x, 0) = X0(x) 2 L2(0, 1);

B(x) = �x, A = d
2

dx2 , f 2 L2(0, 1).

H = L2(0, 1), D(A) = {g 2 H | g
0
, g

00
2 H, g(0) = g(1) = 0}.

The solution is exponentially stable

EkX(t)k2  �e
�kt
kX(0)k2
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Invariant Measure

A mild solutions to a SDE is a Markov process, and generates a transition
semigroup

(Pt') (x) = E (' (Xx(t))) , x - initial condition

If a mild solution is ultimately bounded then there exists an invariant measure

µ := µ(A) =

Z

H

Pt(x,A)µ(dx)
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Other Itô formulas.

For a bounded operator A we get the usual Itô formula.

Itô-Ichikawa formula requires an extension of LH(t, x) to a continuous
function LH(t,X(s)) na [0, T ]⇥H . It may take the form

LH(t, x) =

lim
n!1

hHx(s,Xn(s)), AXn(s)iH

+ hHx(s,X(s)), F (X(s))i
H

+
1

2
tr(Hxx(s,X(s))(B(X(s)))Q(B(X(s)))⇤)

+

Z

H\{0}

h
H(s,X(s) + f(v,X(s)))�H(s,X(s))

�hHx(s,X(s)), f(v,X(s))i
H

i
�(dv)
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Other Itô formulas.

If H(t, x) = e
lA⇤(t, x) i ⇤(t, x) 2 D(A),

lim
n!1

hHx(s,Xn(s)), AXn(s)iH =
D
A

⇤
e
lA⇤x(t,Xn(s)), Xn(s)

E

H

!

D
A

⇤
e
lA⇤x(t,X(s)), X(s)

E

H
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Oter Itô formulas.

DaPrato, Jentzen and Röckner obtained Itô formula in a semigroup form
It agrees with other Itô formulas discussed here in the case of

H(t, x) = e
(t�s)A�(x).
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Closing Comments

I thank the organizers for providing this opportunity
There was rich research collaboration among Professor Mandrekar’s
Students (Milan Merkle (1984), Philip Richard (1990), Sixiang Zhang
(1991), Ruifeng Liu (1997), Philip Gerrish (1998), Juan Du (2007)
A new lead - student research project inspired by Philip Gerrish: "Are
teams of misfits successful?"
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