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Compressive Sensing Idea

From Sensors for Health Monitoring, Chapter 4, Cabral et al. (2019)
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Here we examine this problem when the noise is heavy tailed. Engineers
call this impulsive noise. Specifically, we will use symmetric α-stable noise,
abbreviated SαS

Split the problem into two parts:

Sampling in the presence of impulsive noise (top half of previous page)

Signal reconstruction in the presence of impulsive noise (bottom half
of previous page)
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Stable distributions

A family of probability distributions, with four parameters:

α ∈ (0, 2] is the index of stability

β ∈ [−1, 1] is the skewness parameter

γ > 0 is the scale/dispersion parameter

δ ∈ R is a location parameter.

Stability property under addition/convolution, domain of attraction for
sums, heavy tails, possible skewness.
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No explicit formula for densities, now fast and reliable software to compute
densities, cdf, simulate and estimate parameters. Here we will work with
the symmetric case (β = 0), where the normalized (scale γ = 1, location
δ = 0) densities look like:
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The notation SαS(γ) will be used for a symmetric α−stable law with
scale γ.
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Compressive sampling

A vector v is s-sparse if
‖v‖0 = s is the number of non-zero elements of v.

Assume M, N, N ′ are positive integers with M � N ≤ N ′. Start with a
(real, discrete time) signal x = (x1, . . . , xN)> ∈ RN . Let A : RN 7→ RM be
a function that maps into a lower dimensional space.

In the standard model, A is linear, typically A = ΦΨ> where Φ is an
(M × N) random measurement matrix and Ψ is an (N ′ × N) sparsifying
matrix. A common example for Ψ is the discrete cosine transform (DCT).
Let e ∈ RN be the observational noise, then

y = Φ(Ψ>α0 + e) = ΦΨ>α0 + n = Aα0 + n,

where α0 = Ψx0 ∈ RN′
and n ∈ RM is transformed noise.

Nolan, Tzagkarakis & Tsakalides Compressive sensing 23rd WASP 9 / 32



The goal is to find α (so really Ψ) that satisfies an `0 - `2 constrained
optimization problem

min
α
‖α‖0 s.t. ‖y − Aα‖2 ≤ ε,

where ε is some tolerance. This is a computationally hard problem.

Candés, Romberg, Tao and Donoho (2006) showed that for many
problems, the `1 norm is equivalent to the `0 norm, so one usually solves
the `1 - `2 constrained optimization problem

min
α
‖α‖1 s.t. ‖y − Aα‖2 ≤ ε, (1)

which is more tractable.
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If s = ‖α‖0 ≈ ‖α‖1 � N, then this greatly reduces the dimensionality.
We can transmit an s vector instead of the original N vector without
losing much of the signal.

However, if e has heavy tailed components, then n is heavy tailed and (1)
is poorly behaved. Heavy tailed noise in e gets spread to many columns of
Aα.

So the goal here is to find a more robust choice of A.
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Nonlinear stable filter for A

We propose that a nonlinear map A : RN 7→ RM be used. Specifically we
use a stable filter that downweights extreme values. Let
ρ(·) = − log fα(·; γ, 0), where fα(·; γ, 0) is the density of a symmetric
stable SαS = S(α, β = 0, γ, δ = 0) r.v.
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For x ∈ RN and weights w ∈ RN , define the weighted stable matched filter
(WSMF) is

WSMF (α, γ;w, x) = arg min
θ

N∑
j=1

ρ(wj(xj − θ)).

This was defined in Nolan (2008) using numerical calculation of ρ(·) and
numerical minimization of (non-convex) objective function on the right.

We use this filter with the measurement matrix Φ having rows φ1, . . . ,φM

and define the nonlinear transformation

A(x) = (c1WMSF (α, γ;φ1, x), . . . , cMWMSF (α, γ;φM , x))>,

where ci =
∑N

j=1 |φi ,j |. In words: filter out extremes in each column of
‘wide matrix’ on page 4.
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Simulated run with N = 1024, s = d0.05Ne = 51, Ψ =DCT, Φ = i.i.d.
{−1, 1} with p = 1/2, OMP reconstruction.
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To assess performance across multiple runs, we use the signal-to-error
(SER). For exact x and OMP reconstructed x̂, the SER is

SER(x, x̂) = 10 log10

( ∑N
j=1 x

2
j∑N

j=1(xj − x̂j)2

)
.

Better reconstruction gives a larger SER.
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Simulation with 500 Monte Carlo runs
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EEG data
N = 384, s = d0.05Ne = 20.
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SER for EEG data with varying α ∈ {1, 1.2, 1.4, 1.6, 1.8, 2} and OMP over
500 simulations.

The paper gives an iterative algorithm for estimating α and γ.
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The basic model used in compressed sensing reconstruction is

y = Φx + n,

where

y = (y1, . . . , yM)> is the received signal

Φ is a random M × N measurement matrix

x = (x1, . . . , xN)> is the original signal with ‖x‖0 ≤ s = number of
non-zero terms in x

n = (n1, . . . , nM)> is i.i.d. additive noise

Typically M < N - so underdetermined linear system, s � N - so sparse,
and n has a light tailed distribution, say Var(nj) <∞.
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Choice of Φ

Typical choice of Φ is random, say i.i.d. Gaussian; it is known that this
choice satisfies the Restriction Isometry Property (RIP) with high
probability.

Does it make sense to use i.i.d. stable terms in Φ? Numerical experiments
argue against this. The presence of very large terms in Φ seems to make
the RIP constant bigger.
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Signal reconstruction

Here we focus on the recovery part of the problem. To recover x from
received y, the standard solution is to find x̂ that minimizes

‖y − Φx‖2 s.t. ‖x‖0 ≤ s.

When the noise term n is heavy tailed, the first term above is poorly
behaved, so we seek a different approach.

The rest of this talk will focus on two topics:

Replacing the 2-norm above with a p−norm, where 0 < p < 1. This
has the sparsity property of the `1 norm and it also more robust to
heavy tails.

Developing a reliable way to numerically solve the resulting problem.

Performance will be demonstrated with simulated data and with EEG data.
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Fractional moments and reconstruction

For X SaS(γ), it is known that the fractional lower order moments
(FLOM) are given by

E |X |p =

{
c(α, p)γp 0 < p < α

+∞ p ≥ α
(2)

For 0 < p < α, a sample estimate of E |X |p is
(∑N

i=1 |xi |p
)
/N.

We will reconstruct a signal by solving the minimization problem for x:

min
x
‖y − Φx‖pp s.t. ‖x‖0 ≤ s. (3)

Because of (2), the left hand side above is the (p-th power of the)
dispersion of y − Φx, so (3) is a minimum dispersion criterion.
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Solving the optimization problem

We approximately solve the minimization problem using a greedy
algorithm that is gradient based and automatically satisfies the constraint.

Since p < 1, the objective/cost function ‖y − Φx‖pp is not differentiable,
we replace that term with a smoothed version. For ε > 0, define

‖x‖pp,ε =
N∑
j=1

(
x2j + ε

)p/2

We replace the previous objective function (3) with the following:

min
x
‖y − Φx‖pp,ε s.t. ‖x‖0 ≤ s. (4)
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MD-IHT: Minimum dispersion - iterative hard thresholding

Hard thresholding operator: z = Hs(x) has components zi = xi if xi is one
of the s largest elements of x; otherwise zi = 0.

Calculations shows the gradient of ‖y − Φx‖pp,ε w.r.t. x is

g = −pΦ>W (y − Φx) ,

where W is a diagonal matrix with Wi ,i =
(
(yi − Φi ·x)2 + ε

)−(1−p/2)
.

The iterative approach to minimizing the smoothed objective function is
start with an valid (sparsity s) initial value x(0) and set

x(t+1) = Hs

(
x(t) + µ(t)g(t)

)
,

where µ(t) is a step size determined below. Repeat until relative change is
less than some tolerance, call the result x∗0.

Nolan, Tzagkarakis & Tsakalides Compressive sensing 23rd WASP 26 / 32



Parameter settings and convergence analysis

Choice of step size µ(t): Proposition in the paper gives a value that cannot
increase the dispersion error.

Other parameters: estimate α and γ from y using FLOMs; x(0)

suggestions, etc.

Choice of p: The constant c(α, p)→∞ as p approaches α, so we
recommend picking p = α/2− δ < 1.

Bound on the reconstruction error: With assumptions on the RIP constant
and upper bound on dispersion of the noise, say γ ≤ η,

‖x0 − x∗0‖2 ≤ c(RIP constant,M, α, p) · η.
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Performance with Synthetic Data
Compare MD-IHT to OMP = Orthogonal Matching Pursuit, LIHT =
Lorentzian iterative hard thresholding, & LpRLS= `p-reweighted least
squares
N = 1024 = dimension of x, M = 0.25N = 256, s = 0.02N = 21, with
500 simulations, plot the average SER=signal to error rate
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Fig. 2. Comparison of reconstruction error as a function of noise impulsive-
ness for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used cor-
rupted by SαS sampling noise withαn ∈ [1, 2) and γn ∈ {0.01, 0.1}. Average
SER is shown over 500 Monte Carlo runs.

Fig. 3. Average SER of MD-IHT as a function of the number of linear
measurements corrupted by SαS sampling noise with αn ∈ {1, 1.5, 1.9} and
γn = 0.05.

outperform clearly the least squares-based OMP method, which
better adapts to light-tailed environments.

As a last experiment, we examine the reconstruction perfor-
mance of MD-IHT as the number of linear measurements, M ,
varies from 2s (i.e., twice the cardinality of the sparse sup-
port) to N/2, for a varying sampling noise impulsiveness with
αn ∈ {1, 1.5, 1.9}, and a fixed γn = 0.05. Fig. 3 shows that
MD-IHT starts yielding fair reconstructions of the original sig-
nals using only M ≈ 10%N corrupted linear measurements.

Fig. 4. Original EEG epoch, DCT coefficients and best s-term approximation
(s = �5%N �).

Most importantly, this observation holds even for heavily cor-
rupted measurements (i.e., small αn values), which illustrates
the robustness of MD-IHT in a broad range of impulsive envi-
ronments. However, as the noise impulsiveness increases, more
measurements are required to achieve a satisfactory reconstruc-
tion quality. This is an expected result, which also resembles
the conventional �2-based reconstruction methods that require
more measurements as the noise variance increases.

B. Experiments with EEG Data

The following experiments evaluate and compare the re-
construction performance of our proposed algorithm on real
data [34]. Specifically, the utilized dataset contains electroen-
cephalography (EEG) signals of 32 channels with sequence
length of 30720 data points. Each channel signal consists of
80 epochs, each one containing N = 384 points. Artifacts
caused by muscle movement also occur in the signals. The EEG
signals are compressively sampled in an epoch-by-epoch fash-
ion using a Bernoulli matrixΦ, whereas the 384× 384 DCT ma-
trix is used as the sparsifying dictionary Ψ. The sparsity level is
fixed at s = �5%N�, whilst the number of linear measurements
is set toM = N/2. The measurements are contaminated by ad-
ditive SαS noise with αn ∈ {1, 1.5} and γn ∈ {0.1, 0.5, 1.5}.
The reconstruction quality is measured in terms of the structural
similarity index (SSIM) for 1D signals [35], which is a better
performance index for structured signals. The higher the SSIM
value the better the reconstruction quality, with a value equal
to 1 corresponding to an excellent reconstruction. Furthermore,
the length of the sliding window for the calculation of SSIM is
set to 100.

Fig. 4 shows an original EEG epoch, along with the cor-
responding DCT coefficients and the best s-term approxima-
tion (s = �5%N�). Clearly, the signal is nonsparse both in time
and frequency. Nevertheless, for the reconstruction we consider
that the targeted sparsity level of the DCT coefficients is upper
bounded by s = �5%N�. In Fig. 5, the corresponding recon-
structed epochs are plotted, by applying MD-IHT, OMP, LIHT
and LpRLS on linear measurements corrupted by heavy-tailed
noise with parametersαn = 1,γn = 1.5. For this specific epoch,
MD-IHT and LIHT yield the best reconstruction (i.e., closest to
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Example with EEG recordings
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Fig. 2. Comparison of reconstruction error as a function of noise impulsive-
ness for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used cor-
rupted by SαS sampling noise withαn ∈ [1, 2) and γn ∈ {0.01, 0.1}. Average
SER is shown over 500 Monte Carlo runs.

Fig. 3. Average SER of MD-IHT as a function of the number of linear
measurements corrupted by SαS sampling noise with αn ∈ {1, 1.5, 1.9} and
γn = 0.05.

outperform clearly the least squares-based OMP method, which
better adapts to light-tailed environments.

As a last experiment, we examine the reconstruction perfor-
mance of MD-IHT as the number of linear measurements, M ,
varies from 2s (i.e., twice the cardinality of the sparse sup-
port) to N/2, for a varying sampling noise impulsiveness with
αn ∈ {1, 1.5, 1.9}, and a fixed γn = 0.05. Fig. 3 shows that
MD-IHT starts yielding fair reconstructions of the original sig-
nals using only M ≈ 10%N corrupted linear measurements.

Fig. 4. Original EEG epoch, DCT coefficients and best s-term approximation
(s = �5%N �).

Most importantly, this observation holds even for heavily cor-
rupted measurements (i.e., small αn values), which illustrates
the robustness of MD-IHT in a broad range of impulsive envi-
ronments. However, as the noise impulsiveness increases, more
measurements are required to achieve a satisfactory reconstruc-
tion quality. This is an expected result, which also resembles
the conventional �2-based reconstruction methods that require
more measurements as the noise variance increases.

B. Experiments with EEG Data

The following experiments evaluate and compare the re-
construction performance of our proposed algorithm on real
data [34]. Specifically, the utilized dataset contains electroen-
cephalography (EEG) signals of 32 channels with sequence
length of 30720 data points. Each channel signal consists of
80 epochs, each one containing N = 384 points. Artifacts
caused by muscle movement also occur in the signals. The EEG
signals are compressively sampled in an epoch-by-epoch fash-
ion using a Bernoulli matrixΦ, whereas the 384× 384 DCT ma-
trix is used as the sparsifying dictionary Ψ. The sparsity level is
fixed at s = �5%N�, whilst the number of linear measurements
is set toM = N/2. The measurements are contaminated by ad-
ditive SαS noise with αn ∈ {1, 1.5} and γn ∈ {0.1, 0.5, 1.5}.
The reconstruction quality is measured in terms of the structural
similarity index (SSIM) for 1D signals [35], which is a better
performance index for structured signals. The higher the SSIM
value the better the reconstruction quality, with a value equal
to 1 corresponding to an excellent reconstruction. Furthermore,
the length of the sliding window for the calculation of SSIM is
set to 100.

Fig. 4 shows an original EEG epoch, along with the cor-
responding DCT coefficients and the best s-term approxima-
tion (s = �5%N�). Clearly, the signal is nonsparse both in time
and frequency. Nevertheless, for the reconstruction we consider
that the targeted sparsity level of the DCT coefficients is upper
bounded by s = �5%N�. In Fig. 5, the corresponding recon-
structed epochs are plotted, by applying MD-IHT, OMP, LIHT
and LpRLS on linear measurements corrupted by heavy-tailed
noise with parametersαn = 1,γn = 1.5. For this specific epoch,
MD-IHT and LIHT yield the best reconstruction (i.e., closest to

Here we use the Discrete Fourier Transform (DCT) in the middle row as a
“sparsifying dictionary”. Data from EEGLAB: N = 384,
M = d0.5Ne = 192, sparsity s = d0.05Ne = 20.
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EEG Data, cont’d

500 simulations contaminating the above data with α = 1.5-stable noise
and varying dispersion γ, plot the average SSIM=structural similarity
index measure between the original data and the reconstructed signal
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Fig. 5. Reconstructed EEG epoch from noisy measurements (αn = 1, γn =
1.5) using MD-IHT, OMP, LIHT, and LpRLS.

Fig. 6. Comparison of reconstruction SSIM as a function of noise dispersion
for MD-IHT, OMP, LIHT, and LpRLS. Linear projections are used corrupted
by SαS sampling noise with (a) αn = 1 and (b) αn = 1.5. The SSIM values
are averaged over all the epochs and Monte Carlo runs.

the best s-term approximation), followed by OMP and LpRLS,
which result in a smoother and more oscillatory, respectively,
reconstructed epoch.

In order to study the effects of various impulsive behaviors
for the corrupting noise, we vary αn in {1, 1.5} and γn in
{0.1, 0.5, 1.5}. The choice of αn = 1 is made for a fair com-
parison with LIHT, which is best adapted to Cauchy statistics
for the sampling noise. Figs. 6a–6b show the reconstruction

performance, in terms of the SSIM averaged over all the epochs
and Monte Carlo runs, for MD-IHT, OMP, LIHT, and LpRLS.
The linear measurements are corrupted by SαS sampling noise
with αn = 1 and αn = 1.5, respectively. Clearly, as the noise
impulsiveness increases (αn = 1), OMP and LpRLS fail to
achieve a fair reconstruction of the epochs for increasing noise
dispersion. On the contrary, MD-IHT and LIHT are highly ro-
bust over the whole range of γn values, with MD-IHT present-
ing a slightly better reconstruction when compared with LIHT.
This is very important if we notice that LIHT is intrinsically
related with a Cauchy model for the sampling noise. A similar
behavior is observed when αn = 1.5. In particular, the perfor-
mance of OMP and LpRLS improves as the noise impulsiveness
decreases. However, both methods are still inferior against MD-
IHT and LIHT, which better adapt to heavy-tailed environments.
As before, MD-IHT evidently achieves a more accurate recon-
struction, on average, when compared with LIHT for all the
dispersion values.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a robust method was proposed for the recon-
struction of sparse signals whose compressive measurements
are corrupted by impulsive sampling noise. More specifically,
the heavy-tailed statistics of sampling noise, with possibly in-
finite variance, was modeled by means of SαS distributions.
Subsequently, the effects of additive impulsive sampling noise
were suppressed by designing a novel iterative hard threshold-
ing method based on a minimum dispersion (MD) optimization
criterion. This criterion emerges naturally in the case of ad-
ditive sampling noise modeled by SαS distributions. The pro-
posed MD-IHT algorithm demonstrated an increased robustness
against gross outliers through a least �pp,ε estimation error cri-
terion, where p depends on the inherent impulsiveness of the
noise. A reconstruction error bound was derived that depends
on the noise strength, along with rules for tuning the key param-
eters, such as the value of p and the gradient projection step size,
in order to guarantee convergence for a broad range of impul-
sive noise behaviors. Experimental evaluations with synthetic
and real data revealed that MD-IHT outperforms significantly
state-of-the-art methods in the case of highly impulsive sam-
pling noise, whilst resulting in a comparable performance in
light-tailed environments.

However, a theoretical framework for selecting the optimal
values of the key parameters for the MD-IHT algorithm is still
an open question. Given the importance of initializing appropri-
ately our proposed iterative algorithm to guarantee convergence
to the global minimum, using convex results to initialize an ef-
ficient search for a locally optimal nonconvex solution could
combine the strengths of convex and nonconvex formulations.
Furthermore, incorporating some prior knowledge about the un-
known sparse support in the reconstruction process typically
improves the reconstruction quality. To address this issue, we
will examine a modification of the MD-IHT algorithm for sta-
ble recovery from compressive measurements given a partially
known support. Finally, our current study focused on multivari-
ate sampling noise with i.i.d. components. It would be also of
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Any Questions?
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