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Compressive Sensing Idea

it J‘V/\_A j\,/\,

From Sensors for Health Monitoring, Chapter 4, Cabral et al. (2019)
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Here we examine this problem when the noise is heavy tailed. Engineers
call this impulsive noise. Specifically, we will use symmetric a-stable noise,

abbreviated SaS

Split the problem into two parts:
@ Sampling in the presence of impulsive noise (top half of previous page)

@ Signal reconstruction in the presence of impulsive noise (bottom half
of previous page)
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Stable distributions

A family of probability distributions, with four parameters:
e a € (0,2] is the index of stability
e [ € [—1,1] is the skewness parameter
@ 7 > 0 is the scale/dispersion parameter

@ 6 € R is a location parameter.

Stability property under addition/convolution, domain of attraction for
sums, heavy tails, possible skewness.
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No explicit formula for densities, now fast and reliable software to compute
densities, cdf, simulate and estimate parameters. Here we will work with
the symmetric case (8 = 0), where the normalized (scale v = 1, location
0 = 0) densities look like:

symmetric stable densities

QQQQ

c
n P(X>X)~W

00 01 02 03 04 05 06

T T T T T
-4 -2 0 2 4

The notation SaS(y) will be used for a symmetric a—stable law with
scale .
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Compressive sampling

A vector v is s-sparse if
|lv|][o = s is the number of non-zero elements of v.

Assume M, N, N’ are positive integers with M < N < N’. Start with a
(real, discrete time) signal x = (x1,...,xy)" € RV, Let A: RN s RM be
a function that maps into a lower dimensional space.

In the standard model, A is linear, typically A= ®W T where ® is an

(M x N) random measurement matrix and W is an (N’ x N) sparsifying
matrix. A common example for W is the discrete cosine transform (DCT).
Let e € RN be the observational noise, then

y=o(V ap+e)=dV ay+n=Aag+n,

where ag = Uxq € RN and n € RM is transformed noise.
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The goal is to find a (so really W) that satisfies an £ - £2 constrained
optimization problem

minllafo sty - Aalz <«
where € is some tolerance. This is a computationally hard problem.

Candés, Romberg, Tao and Donoho (2006) showed that for many
problems, the ¢! norm is equivalent to the % norm, so one usually solves
the ¢! - ¢? constrained optimization problem

min[lafli st [ly —Aaf2 <€ (1)

which is more tractable.
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If s = ||a]jo = ||a|l1 < N, then this greatly reduces the dimensionality.
We can transmit an s vector instead of the original N vector without
losing much of the signal.

However, if @ has heavy tailed components, then n is heavy tailed and (1)
is poorly behaved. Heavy tailed noise in e gets spread to many columns of
Ao

So the goal here is to find a more robust choice of A.

Nolan, Tzagkarakis & Tsakalides Compressive sensing 23rd WASP 11/32



Nonlinear stable filter for A

We propose that a nonlinear map A : RN — RM be used. Specifically we
use a stable filter that downweights extreme values. Let

p(-) = —log fy(+;v,0), where f,(-;7,0) is the density of a symmetric
stable SaS = S(«, 5 =0,7,0 =0) r.v.
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For x € RN and weights w € RV, define the weighted stable matched filter
(WSMF) is

N

WSMF (a,7; w,x) = arg min Z} p(wi(x; = 0)).
J:

This was defined in Nolan (2008) using numerical calculation of p(-) and
numerical minimization of (non-convex) objective function on the right.

We use this filter with the measurement matrix ® having rows ¢q,..., ¢y
and define the nonlinear transformation

A(x) = (a WMSF (o, y; ¢1,%), - . ., cy WMSF (v, ; ¢M,x))T,

where ¢; = Zszl |¢ij|. In words: filter out extremes in each column of

‘wide matrix’ on page 4.
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Simulated run with N = 1024, s = [0.05N | = 51, ¥V =DCT, ¢ = i.i.d.

{-1,1} with p = 1/2, OMP reconstruction.
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To assess performance across multiple runs, we use the signal-to-error
(SER). For exact x and OMP reconstructed X, the SER is

N
Zj:1 Xj2
N =

SER(X,S(\) = 10 |Og10 >
j:l(Xj - Xj)

Better reconstruction gives a larger SER.
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Simulation with 500 Monte Carlo runs

SER (dB)
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EEG data
N =384, s = [0.05N] = 20.

An original EEG epoch
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SER for EEG data with varying o € {1,1.2,1.4,1.6,1.8,2} and OMP over
500 simulations.
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The paper gives an iterative algorithm for estimating « and ~.
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The basic model used in compressed sensing reconstruction is
y = ®x + n,

where

oy =(y1,--s¥m
@ ® is a random M x N measurement matrix

)" is the received signal

@ x=(x1,...,xn)" is the original signal with ||x|lo < s = number of
non-zero terms in x

e n=(ny,...,ny)" isiid. additive noise

Typically M < N - so underdetermined linear system, s << N - so sparse,
and n has a light tailed distribution, say Var(n;) < oo.
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Choice of ®

Typical choice of ® is random, say i.i.d. Gaussian; it is known that this
choice satisfies the Restriction Isometry Property (RIP) with high
probability.

Does it make sense to use i.i.d. stable terms in ®? Numerical experiments

argue against this. The presence of very large terms in ® seems to make
the RIP constant bigger.
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Signal reconstruction

Here we focus on the recovery part of the problem. To recover x from
received y, the standard solution is to find X that minimizes

ly —®x[> st [x]lo <s.

When the noise term n is heavy tailed, the first term above is poorly
behaved, so we seek a different approach.

The rest of this talk will focus on two topics:

@ Replacing the 2-norm above with a p—norm, where 0 < p < 1. This
has the sparsity property of the £* norm and it also more robust to
heavy tails.

@ Developing a reliable way to numerically solve the resulting problem.

Performance will be demonstrated with simulated data and with EEG da
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Fractional moments and reconstruction

For X SaS(7), it is known that the fractional lower order moments
(FLOM) are given by

EIX|P = c(a,p)y? 0<p<a
+oo p>«

For 0 < p < a, a sample estimate of E|X|P is (Z,N:l |x,-]”) /N.
We will reconstruct a signal by solving the minimization problem for x:
minlly — ox[ st [xllo <s. (3)

Because of (2), the left hand side above is the (p-th power of the)
dispersion of y — ®x, so (3) is a minimum dispersion criterion.
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Solving the optimization problem

We approximately solve the minimization problem using a greedy
algorithm that is gradient based and automatically satisfies the constraint.

Since p < 1, the objective/cost function ||y — ®x||5 is not differentiable,
we replace that term with a smoothed version. For € > 0, define

N

g =3 (xF +¢)

Jj=1

We replace the previous objective function (3) with the following:

minfly —&x|[5. st |x]o <s. (4)
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MD-IHT: Minimum dispersion - iterative hard thresholding

Hard thresholding operator: z = Hs(x) has components z; = x; if x; is one
of the s largest elements of x; otherwise z; = 0.

Calculations shows the gradient of ||y — ®x|b. w.r.t. x is
g = —p(DTW(y— (Dx)a
L o v A —(1-p/2)
where W is a diagonal matrix with W; ; = ((yl d;.x)° + e) .

The iterative approach to minimizing the smoothed objective function is
start with an valid (sparsity s) initial value x(®) and set

x(tH1) — H, (x(t) n M(r)g(t)) ’

where u(t) is a step size determined below. Repeat until relative change is
less than some tolerance, call the result xg.
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Parameter settings and convergence analysis
Choice of step size u(t): Proposition in the paper gives a value that cannot
increase the dispersion error.

Other parameters: estimate o and + from y using FLOMs; x(©)
suggestions, etc.

Choice of p: The constant c(a, p) — oo as p approaches «, so we
recommend picking p=«a/2 —§ < 1.

Bound on the reconstruction error: With assumptions on the RIP constant
and upper bound on dispersion of the noise, say v < 7,

Ixo — xg|l2 < ¢(RIP constant, M, a, p) - .
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Performance with Synthetic Data

Compare MD-IHT to OMP = Orthogonal Matching Pursuit, LIHT =
Lorentzian iterative hard thresholding, & LpRLS= ¢P-reweighted least
squares

N = 1024 = dimension of x, M = 0.25N = 256, s = 0.02 N = 21, with
500 simulations, plot the average SER=signal to error rate
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Example with EEG recordings

An original EEG epoch
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Here we use the Discrete Fourier Transform (DCT) in the middle row as a
“sparsifying dictionary”. Data from EEGLAB: N = 384,
M = [0.5N] = 192, sparsity s = [0.05N] = 20.
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EEG Data, cont'd

500 simulations contaminating the above data with o = 1.5-stable noise
and varying dispersion =y, plot the average SSIM=structural similarity
index measure between the original data and the reconstructed signal

SSIM
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Any Questions?

Nolan, Tzagkarakis & Tsakalides Compressive sensing 23rd WASP 32/32



	Compressive Sensing (CS)
	Compressive Sampling
	Sampling Examples
	Signal reconstruction
	Reconstruction Examples

