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Extremal clustering and extremal index

I Extremes of an i.i.d. sequence do not cluster!

I Y1,Y2, . . . i.i.d., common distribution H,

M
(0)
n = max(Y1, . . . ,Yn).

I H is in a maximum domain of attraction if there are (an),

(bn) such that (M
(0)
n − bn)/an ⇒ G , some nondegenerate G .
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I Automatically G (x) = Gγ(Ax + B), x ∈ R
for some γ ∈ R and A > 0,B ∈ R.

I The “standard” distributions Gγ :

1. Fréchet Gγ(x) = exp{−x−1/γ}, x ≥ 0 if γ > 0,
2. Gumbel G0(x) = exp{−e−x}, x ∈ R,
3. Weibull Gγ(x) = exp{−(−x)−1/γ}, x ≤ 0 if γ < 0.
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I If X1,X2, . . . is a stationary sequence with a marginal
distribution H, its extreme values may cluster.

I A common numerical measure of clustering:
the extremal index (Davis (1979), Leadbetter (1983)).
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The stationary sequence X1,X2, . . . has extremal index θ
if for some nondegenerate G both

(M
(0)
[nθ] − bn)/an ⇒ G θ and (Mn − bn)/an ⇒ G θ,

I Mn is “similar” to M
(0)
[nθ].

I An extremal index, if it exists, is in the range 0 < θ ≤ 1.

I The extremes cluster together, the average cluster size 1/θ.
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I The situation becomes complicated when the stationary
sequence has long memory with respect to its extremes.

I The average cluster size becomes infinite!

I New normalization and centering are needed.

I What do extremal clusters look like?
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Two ways to look at the shape of extremal clusters

1 Point process convergence Let

Mpp
n =

n∑
i=1

δ(Xi−bn)/an .

Under some conditions (if the memory is not too long)

Mpp
n ⇒ Mpp

∞ weakly, in the vague topology,

Mpp
∞ =

∞∑
j=1

∑
x∈Sj (Γj )

δx

(Γj): standard Poisson arrivals, (Sj)(·): (random) extremal clusters.
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2 Sup measures convergence

For open set G ∈ [0, 1] let

Msm
n (G ) = sup

i/n∈G
Xi .

Under some conditions

(
Msm

n − bsmn
)
/asmn ⇒ Msm

∞ weakly, in the sup vague topology,

Msm
∞ (G ) = sup

t∈G

∑
j

D(t, Γj)1
(
t ∈ Sj).

D(t, ·): random function, (Γj): Poisson arrivals, (Sj): random sets.
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Stationary infinitely divisible processes with long memory

Xn =

∫
E
f ◦ θn(x)M(dx), n ∈ Z .

I θ is the left shift operator on E = ZZ;

I M is an infinitely divisible random measure on (E , E);

I The marginal Lévy measure ν has a subexponential right tail,
and so is marginal tail of X .
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I The control measure of M has the form

µ(·) :=
∑
i∈Z

πiPi (·) ,

I (πi ): the invariant measure of an irreducible, aperiodic, and
null recurrent Markov chain {Yt}t∈Z on Z;

I Pi is the probability law of {Yt}t∈Z on (E , E) given Y0 = i .

I The key assumption:

P0

(
inf{n ≥ 1 : Yn = 0} > m

)
∈ RV−β, 0 < β < 1.
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I The normalization and centering in the extremal limit
theorems depend on the marginal tails and on the memory
encoded in β.

I So do the shape of the extremal clusters Sj and the mass
distribtion D(t, Γj) over Sj .

I The lighter is the tails and the longer is the memory, the more
intricate is the picture.

I Assume moderately long memory: 0 < β < 1/2.
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We assume that the marginal tails are subexponential:

A distribution H is subexponential if

lim
x→∞

H ∗ H(x)

H(x)
= 2 .

Case 1: regularly varying tails ν
(
(x ,∞)

)
∈ RV−α, α > 0.
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Case 2: lognormal-type tails

ν
(
(x ,∞)

)
∼ cxβ(log x)ξ exp (−λ(log x)γ)

for some γ > 1, λ, c > 0 and β, ξ ∈ R.



Case 3: super-lognormal-type tails

ν
(
(x ,∞)

)
∼ cxβ(log x)ξ exp (λ(log x)γ) exp (−ρ exp (µ(log x)α))

for some α ∈ (0, 1), c , µ, ρ > 0 and β, ξ, λ, γ ∈ R.

Case 4: semiexponential tails

ν
(
(x ,∞)

)
∼ exp

(
−x−αL(x)

)
for some α ∈ (0, 1) and a slowly varying L.
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Stable regenerative sets

I {Lβ(t)}t>0: β-stable subordinator, 0 < β < 1.

I β- stable regenerative set: {Lβ(t) : t ∈ R+}.

I Two independent β- stable regenerative sets intersect with
probability 0 (if 0 < β ≤ 1/2) or 1 (if 1/2 < β < 1).
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In the case of regularly varying tails:

I marginally, the Fréchet maximum domain of attraction;

I Extremal clusters: iid, Sj = Rj + Uj ;
(Rj) β- stable regenerative sets,
P(Uj ≤ x) = x1−β, 0 ≤ x ≤ 1.

I Spread of the mass: D(t, Γj) = Γ
−1/α
j 1(t ∈ Sj).
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