

A new shape of extremal clusters for certain
stationary semi-exponential processes with
moderate long range dependence

with Z. Chen

Extremal clustering and extremal index

Extremal clustering and extremal index

- ▶ Extremes of an i.i.d. sequence do not cluster!

Extremal clustering and extremal index

- ▶ Extremes of an i.i.d. sequence do not cluster!
- ▶ Y_1, Y_2, \dots i.i.d., common distribution H ,
 $M_n^{(0)} = \max(Y_1, \dots, Y_n)$.

Extremal clustering and extremal index

- ▶ Extremes of an i.i.d. sequence do not cluster!
- ▶ Y_1, Y_2, \dots i.i.d., common distribution H ,
 $M_n^{(0)} = \max(Y_1, \dots, Y_n)$.
- ▶ H is in a maximum domain of attraction if there are (a_n) ,
 (b_n) such that $(M_n^{(0)} - b_n)/a_n \Rightarrow G$, some nondegenerate G .

- ▶ Automatically $G(x) = G_\gamma(Ax + B)$, $x \in \mathbb{R}$ for some $\gamma \in \mathbb{R}$ and $A > 0, B \in \mathbb{R}$.

- ▶ Automatically $G(x) = G_\gamma(Ax + B)$, $x \in \mathbb{R}$ for some $\gamma \in \mathbb{R}$ and $A > 0, B \in \mathbb{R}$.
- ▶ The “standard” distributions G_γ :
 1. Fréchet $G_\gamma(x) = \exp\{-x^{-1/\gamma}\}$, $x \geq 0$ if $\gamma > 0$,
 2. Gumbel $G_0(x) = \exp\{-e^{-x}\}$, $x \in \mathbb{R}$,
 3. Weibull $G_\gamma(x) = \exp\{-(-x)^{-1/\gamma}\}$, $x \leq 0$ if $\gamma < 0$.

- ▶ If X_1, X_2, \dots is a stationary sequence with a marginal distribution H , its extreme values may cluster.

- ▶ If X_1, X_2, \dots is a stationary sequence with a marginal distribution H , its extreme values may cluster.
- ▶ A common numerical measure of clustering:
the extremal index (Davis (1979), Leadbetter (1983)).

- ▶ If X_1, X_2, \dots is a stationary sequence with a marginal distribution H , its extreme values may cluster.
- ▶ A common numerical measure of clustering:
the extremal index (Davis (1979), Leadbetter (1983)).
- ▶ $M_n = \max(X_1, \dots, X_n)$, $M_n^{(0)} = \max(Y_1, \dots, Y_n)$.

- ▶ If X_1, X_2, \dots is a stationary sequence with a marginal distribution H , its extreme values may cluster.
- ▶ A common numerical measure of clustering:
the extremal index (Davis (1979), Leadbetter (1983)).
- ▶ $M_n = \max(X_1, \dots, X_n)$, $M_n^{(0)} = \max(Y_1, \dots, Y_n)$.
 Y_1, Y_2, \dots i.i.d. with the same marginal distribution H .

The stationary sequence X_1, X_2, \dots has extremal index θ if for some nondegenerate G both

$$(M_{[n\theta]}^{(0)} - b_n)/a_n \Rightarrow G^\theta \text{ and } (M_n - b_n)/a_n \Rightarrow G^\theta,$$

The stationary sequence X_1, X_2, \dots has extremal index θ if for some nondegenerate G both

$$(M_{[n\theta]}^{(0)} - b_n)/a_n \Rightarrow G^\theta \text{ and } (M_n - b_n)/a_n \Rightarrow G^\theta,$$

- ▶ M_n is “similar” to $M_{[n\theta]}^{(0)}$.

The stationary sequence X_1, X_2, \dots has extremal index θ if for some nondegenerate G both

$$(M_{[n\theta]}^{(0)} - b_n)/a_n \Rightarrow G^\theta \text{ and } (M_n - b_n)/a_n \Rightarrow G^\theta,$$

- ▶ M_n is “similar” to $M_{[n\theta]}^{(0)}$.
- ▶ An extremal index, if it exists, is in the range $0 < \theta \leq 1$.

The stationary sequence X_1, X_2, \dots has extremal index θ if for some nondegenerate G both

$$(M_{[n\theta]}^{(0)} - b_n)/a_n \Rightarrow G^\theta \text{ and } (M_n - b_n)/a_n \Rightarrow G^\theta,$$

- ▶ M_n is “similar” to $M_{[n\theta]}^{(0)}$.
- ▶ An extremal index, if it exists, is in the range $0 < \theta \leq 1$.
- ▶ The extremes cluster together, the average cluster size $1/\theta$.

- ▶ The situation becomes complicated when the stationary sequence has **long memory with respect to its extremes**.

- ▶ The situation becomes complicated when the stationary sequence has **long memory with respect to its extremes**.
- ▶ The average cluster size becomes infinite!

- ▶ The situation becomes complicated when the stationary sequence has **long memory with respect to its extremes**.
- ▶ The average cluster size becomes infinite!
- ▶ New normalization and centering are needed.

- ▶ The situation becomes complicated when the stationary sequence has **long memory with respect to its extremes**.
- ▶ The average cluster size becomes infinite!
- ▶ New normalization and centering are needed.
- ▶ What do extremal clusters look like?

Two ways to look at the shape of extremal clusters

Two ways to look at the shape of extremal clusters

1 *Point process convergence*

Two ways to look at the shape of extremal clusters

1 Point process convergence Let

$$M_n^{\text{pp}} = \sum_{i=1}^n \delta_{(X_i - b_n)/a_n}.$$

Two ways to look at the shape of extremal clusters

1 Point process convergence Let

$$M_n^{\text{pp}} = \sum_{i=1}^n \delta_{(X_i - b_n)/a_n}.$$

Under some conditions (if the memory is not too long)

$M_n^{\text{pp}} \Rightarrow M_{\infty}^{\text{pp}}$ weakly, in the vague topology,

Two ways to look at the shape of extremal clusters

1 Point process convergence Let

$$M_n^{\text{pp}} = \sum_{i=1}^n \delta_{(X_i - b_n)/a_n}.$$

Under some conditions (if the memory is not too long)

$M_n^{\text{pp}} \Rightarrow M_{\infty}^{\text{pp}}$ weakly, in the vague topology,

$$M_{\infty}^{\text{pp}} = \sum_{j=1}^{\infty} \sum_{x \in S_j(\Gamma_j)} \delta_x$$

Two ways to look at the shape of extremal clusters

1 Point process convergence Let

$$M_n^{\text{pp}} = \sum_{i=1}^n \delta_{(X_i - b_n)/a_n}.$$

Under some conditions (if the memory is not too long)

$M_n^{\text{pp}} \Rightarrow M_{\infty}^{\text{pp}}$ weakly, in the vague topology,

$$M_{\infty}^{\text{pp}} = \sum_{j=1}^{\infty} \sum_{x \in S_j(\Gamma_j)} \delta_x$$

(Γ_j) : standard Poisson arrivals, $(S_j)(\cdot)$: (random) extremal clusters.

2 *Sup measures convergence*

2 Sup measures convergence For open set $G \in [0, 1]$ let

$$M_n^{\text{sm}}(G) = \sup_{i/n \in G} X_i.$$

2 Sup measures convergence For open set $G \in [0, 1]$ let

$$M_n^{\text{sm}}(G) = \sup_{i/n \in G} X_i.$$

Under some conditions

$$(M_n^{\text{sm}} - b_n^{\text{sm}})/a_n^{\text{sm}} \Rightarrow M_\infty^{\text{sm}} \text{ weakly, in the sup vague topology,}$$

2 Sup measures convergence For open set $G \in [0, 1]$ let

$$M_n^{\text{sm}}(G) = \sup_{i/n \in G} X_i.$$

Under some conditions

$$(M_n^{\text{sm}} - b_n^{\text{sm}})/a_n^{\text{sm}} \Rightarrow M_\infty^{\text{sm}} \text{ weakly, in the sup vague topology,}$$

$$M_\infty^{\text{sm}}(G) = \sup_{t \in G} \sum_j D(t, \Gamma_j) \mathbf{1}(t \in S_j).$$

$D(t, \cdot)$: random function, (Γ_j) : Poisson arrivals, (S_j) : random sets.

Stationary infinitely divisible processes with long memory

$$X_n = \int_E f \circ \theta^n(x) M(dx), \quad n \in \mathbb{Z}.$$

Stationary infinitely divisible processes with long memory

$$X_n = \int_E f \circ \theta^n(x) M(dx), \quad n \in \mathbb{Z}.$$

- ▶ θ is the left shift operator on $E = \mathbb{Z}^{\mathbb{Z}}$;

Stationary infinitely divisible processes with long memory

$$X_n = \int_E f \circ \theta^n(x) M(dx), \quad n \in \mathbb{Z}.$$

- ▶ θ is the left shift operator on $E = \mathbb{Z}^{\mathbb{Z}}$;
- ▶ M is an infinitely divisible random measure on (E, \mathcal{E}) ;

Stationary infinitely divisible processes with long memory

$$X_n = \int_E f \circ \theta^n(x) M(dx), \quad n \in \mathbb{Z}.$$

- ▶ θ is the left shift operator on $E = \mathbb{Z}^{\mathbb{Z}}$;
- ▶ M is an infinitely divisible random measure on (E, \mathcal{E}) ;
- ▶ The marginal Lévy measure ν has a subexponential right tail, and so is marginal tail of X .

- ▶ The control measure of M has the form

$$\mu(\cdot) := \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot),$$

- ▶ The control measure of M has the form

$$\mu(\cdot) := \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot),$$

- ▶ (π_i) : the invariant measure of an irreducible, aperiodic, and null recurrent Markov chain $\{Y_t\}_{t \in \mathbb{Z}}$ on \mathbb{Z} ;

- ▶ The control measure of M has the form

$$\mu(\cdot) := \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot),$$

- ▶ (π_i) : the invariant measure of an irreducible, aperiodic, and null recurrent Markov chain $\{Y_t\}_{t \in \mathbb{Z}}$ on \mathbb{Z} ;
- ▶ P_i is the probability law of $\{Y_t\}_{t \in \mathbb{Z}}$ on (E, \mathcal{E}) given $Y_0 = i$.

- ▶ The control measure of M has the form

$$\mu(\cdot) := \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot),$$

- ▶ (π_i) : the invariant measure of an irreducible, aperiodic, and null recurrent Markov chain $\{Y_t\}_{t \in \mathbb{Z}}$ on \mathbb{Z} ;
- ▶ P_i is the probability law of $\{Y_t\}_{t \in \mathbb{Z}}$ on (E, \mathcal{E}) given $Y_0 = i$.
- ▶ The key assumption:

$$P_0\left(\inf\{n \geq 1 : Y_n = 0\} > m\right) \in \text{RV}_{-\beta}, \quad 0 < \beta < 1.$$

- ▶ The normalization and centering in the extremal limit theorems depend on the marginal tails and on the memory encoded in β .

- ▶ The normalization and centering in the extremal limit theorems depend on the marginal tails and on the memory encoded in β .
- ▶ So do the shape of the extremal clusters S_j and the mass distribution $D(t, \Gamma_j)$ over S_j .

- ▶ The normalization and centering in the extremal limit theorems depend on the marginal tails and on the memory encoded in β .
- ▶ So do the shape of the extremal clusters S_j and the mass distribution $D(t, \Gamma_j)$ over S_j .
- ▶ The lighter is the tails and the longer is the memory, the more intricate is the picture.

- ▶ The normalization and centering in the extremal limit theorems depend on the marginal tails and on the memory encoded in β .
- ▶ So do the shape of the extremal clusters S_j and the mass distribution $D(t, \Gamma_j)$ over S_j .
- ▶ The lighter is the tails and the longer is the memory, the more intricate is the picture.
- ▶ Assume **moderately long memory**: $0 < \beta < 1/2$.

We assume that the marginal tails are *subexponential*:

We assume that the marginal tails are *subexponential*:
A distribution H is subexponential if

$$\lim_{x \rightarrow \infty} \frac{\overline{H * H}(x)}{\overline{H}(x)} = 2.$$

We assume that the marginal tails are *subexponential*:
A distribution H is subexponential if

$$\lim_{x \rightarrow \infty} \frac{\overline{H * H}(x)}{\overline{H}(x)} = 2.$$

Case 1: regularly varying tails $\nu((x, \infty)) \in \text{RV}_{-\alpha}$, $\alpha > 0$.

We assume that the marginal tails are *subexponential*:
A distribution H is subexponential if

$$\lim_{x \rightarrow \infty} \frac{\overline{H * H}(x)}{\overline{H}(x)} = 2.$$

Case 1: regularly varying tails $\nu((x, \infty)) \in \text{RV}_{-\alpha}$, $\alpha > 0$.

Case 2: lognormal-type tails

$$\nu((x, \infty)) \sim cx^\beta (\log x)^\xi \exp(-\lambda(\log x)^\gamma)$$

for some $\gamma > 1$, $\lambda, c > 0$ and $\beta, \xi \in \mathbb{R}$.

Case 3: super-lognormal-type tails

$$\nu((x, \infty)) \sim cx^\beta (\log x)^\xi \exp(\lambda(\log x)^\gamma) \exp(-\rho \exp(\mu(\log x)^\alpha))$$

for some $\alpha \in (0, 1)$, $c, \mu, \rho > 0$ and $\beta, \xi, \lambda, \gamma \in \mathbb{R}$.

Case 3: super-lognormal-type tails

$$\nu((x, \infty)) \sim cx^\beta (\log x)^\xi \exp(\lambda(\log x)^\gamma) \exp(-\rho \exp(\mu(\log x)^\alpha))$$

for some $\alpha \in (0, 1)$, $c, \mu, \rho > 0$ and $\beta, \xi, \lambda, \gamma \in \mathbb{R}$.

Case 4: semiexponential tails

$$\nu((x, \infty)) \sim \exp(-x^{-\alpha} L(x))$$

for some $\alpha \in (0, 1)$ and a slowly varying L .

Stable regenerative sets

Stable regenerative sets

- ▶ $\{L_\beta(t)\}_{t \geq 0}$: β -stable subordinator, $0 < \beta < 1$.

Stable regenerative sets

- ▶ $\{L_\beta(t)\}_{t \geq 0}$: β -stable subordinator, $0 < \beta < 1$.
- ▶ β - stable regenerative set: $\overline{\{L_\beta(t) : t \in \mathbb{R}_+\}}$.

Stable regenerative sets

- ▶ $\{L_\beta(t)\}_{t \geq 0}$: β -stable subordinator, $0 < \beta < 1$.
- ▶ β - stable regenerative set: $\overline{\{L_\beta(t) : t \in \mathbb{R}_+\}}$.
- ▶ Two independent β - stable regenerative sets intersect with probability 0 (if $0 < \beta \leq 1/2$) or 1 (if $1/2 < \beta < 1$).

In the case of regularly varying tails:

In the case of regularly varying tails:

- ▶ marginally, the Fréchet maximum domain of attraction;

In the case of regularly varying tails:

- ▶ marginally, the Fréchet maximum domain of attraction;
- ▶ Extremal clusters: iid, $S_j = R_j + U_j$;

In the case of regularly varying tails:

- ▶ marginally, the Fréchet maximum domain of attraction;
- ▶ Extremal clusters: iid, $S_j = R_j + U_j$;
 (R_j) β - stable regenerative sets,
 $P(U_j \leq x) = x^{1-\beta}$, $0 \leq x \leq 1$.

In the case of regularly varying tails:

- ▶ marginally, the Fréchet maximum domain of attraction;
- ▶ Extremal clusters: iid, $S_j = R_j + U_j$;
 (R_j) β - stable regenerative sets,
 $P(U_j \leq x) = x^{1-\beta}$, $0 \leq x \leq 1$.
- ▶ Spread of the mass: $D(t, \Gamma_j) = \Gamma_j^{-1/\alpha} \mathbf{1}(t \in S_j)$.

In the case of lognormal-type and super-lognormal-type tails:

In the case of lognormal-type and super-lognormal-type tails:

- ▶ marginally, the Gumbel maximum domain of attraction;

In the case of lognormal-type and super-lognormal-type tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets.

In the case of lognormal-type and super-lognormal-type tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets.
- ▶ Spread of the mass: $D(t, \Gamma_j) = -\log \Gamma_j \mathbf{1}(t \in S_j)$.

In the case of semiexponential tails:

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets (S_j).

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets (S_j) .
- ▶ Spread of the mass: on each S_j take an iid sample $(W_{k,j})$ from the normalized Hausdorff measure;

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets (S_j).
- ▶ Spread of the mass: on each S_j take an iid sample $(W_{k,j})$ from the normalized Hausdorff measure; $(\Gamma_{k,j})$: Poisson arrivals.

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets (S_j) .
- ▶ Spread of the mass: on each S_j take an iid sample $(W_{k,j})$ from the normalized Hausdorff measure; $(\Gamma_{k,j})$: Poisson arrivals.

$$D(W_{k,j}, \Gamma_j) = -\log \Gamma_j - \frac{1}{C_{\alpha,\beta}} \log \left(\frac{c_\beta \Gamma_{k,j}}{m_\beta(S_j)} \right)$$

In the case of semiexponential tails:

- ▶ marginally, the Gumbel maximum domain of attraction;
- ▶ Extremal clusters: the shifted stable regenerative sets (S_j).
- ▶ Spread of the mass: on each S_j take an iid sample $(W_{k,j})$ from the normalized Hausdorff measure; $(\Gamma_{k,j})$: Poisson arrivals.

$$D(W_{k,j}, \Gamma_j) = -\log \Gamma_j - \frac{1}{C_{\alpha,\beta}} \log \left(\frac{c_\beta \Gamma_{k,j}}{m_\beta(S_j)} \right)$$

$C_{\alpha,\beta}$, c_β constants, $m_\beta(S_j)$ the Hausdorff measure of S_j .