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» Extremes of an i.i.d. sequence do not cluster!

> Yy, Ys,...i.id., common distribution H,
MO = max(Yi,...,Y,).

» His in a maximum domain of attraction if there are (a,),
(bn) such that (/\/I,(,O) — by)/an = G, some nondegenerate G.
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» Automatically G(x) = G,(Ax+ B), x € R
for some y € Rand A>0,B € R.

» The “standard” distributions G,:

1. Fréchet G,(x) = exp{—x"1/7}, x > 0if v >0,
2. Gumbel Gy(x) = exp{—e*}, x € R,
3. Weibull G,(x) = exp{—(—x)"Y/"}, x <0if y < 0.
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> If X1, Xo,... is a stationary sequence with a marginal
distribution H, its extreme values may cluster.

» A common numerical measure of clustering:
the extremal index (Davis (1979), Leadbetter (1983)).

» M, = max(Xi,...,Xn), /\/I,(,o) =max(Y1,..., Yn).

Y1, Yo, ... i.i.d. with the same marginal distribution H.
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The stationary sequence Xi, Xp, ... has extremal index 6
if for some nondegenerate G both

(M)~ bn)/an = G* and (M, — by)/a, = G,

(0)
nf

» M, is “similar” to M[

ik
> An extremal index, if it exists, is in the range 0 < 0 < 1.

» The extremes cluster together, the average cluster size 1/6.
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» The average cluster size becomes infinite!
> New normalization and centering are needed.

» What do extremal clusters look like?
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Two ways to look at the shape of extremal clusters

1 Point process convergence Let

Mfr;p = Z 5(Xi7bn)/an'
i=1

Under some conditions (if the memory is not too long)

MPP = MEP weakly, in the vague topology,

-y Y b

J=1 x€S(T))

(F'j): standard Poisson arrivals, (5;)(-): (random) extremal clusters.
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2 Sup measures convergence For open set G € [0, 1] let

MM (G) = sup X;.
i/n€G

Under some conditions
(M™ — by™) /as™ = M3 weakly, in the sup vague topology,

M32(G) =sup Y _D(t,T))1(t € S)).
teG
J

D(t,-): random function, (I';): Poisson arrivals, (S;): random sets.



Stationary infinitely divisible processes with long memory

x,,:/foen(x)/v/(dx), nez.
E



Stationary infinitely divisible processes with long memory

X,,:/fOG"(X)I\/I(dX), nez.
E

> 6 is the left shift operator on E = Z7;



Stationary infinitely divisible processes with long memory

X,,:/fOG"(X)I\/I(dX), nez.
E

> 6 is the left shift operator on E = Z7;

» M is an infinitely divisible random measure on (E,£);



Stationary infinitely divisible processes with long memory

X,,:/foe”(x)l\/l(dx), nez.
E

P 0 is the left shift operator on E = vig
» M is an infinitely divisible random measure on (E,£);

» The marginal Lévy measure v has a subexponential right tail,
and so is marginal tail of X.
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» The control measure of M has the form

p(-) =D miPi(),

i€Z

» (;): the invariant measure of an irreducible, aperiodic, and
null recurrent Markov chain {Y;}iez on Z;

» P; is the probability law of {Y;}+ez on (E, &) given Yy = i.
» The key assumption:

Pg(inf{n21:Y,,:O}>m) €RV_5, 0<fB<1.
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The normalization and centering in the extremal limit
theorems depend on the marginal tails and on the memory
encoded in f.

So do the shape of the extremal clusters S; and the mass
distribtion D(t,I;) over S;.

The lighter is the tails and the longer is the memory, the more
intricate is the picture.

Assume moderately long memory: 0 < 5 < 1/2.
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Case 2: lognormal-type tails

v((x,00)) ~ cxP(log x)¢ exp (—A(log x)?)

for some v > 1, \,c > 0 and 3,¢ € R.
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Case 3: super-lognormal-type tails

v((x,00)) ~ ex’(log x)* exp (A(log x)) exp (—p exp (1(log x)*))
for some « € (0,1), ¢, i, p >0 and B,&, N\, v € R.
Case 4: semiexponential tails

v((x,00)) ~ exp (—x~“L(x))

for some a € (0,1) and a slowly varying L.
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Stable regenerative sets

» {Ls(t)}e=0: [-stable subordinator, 0 < 3 < 1.

» [3- stable regenerative set: {Lg(t):t € R;}.

» Two independent (- stable regenerative sets intersect with
probability 0 (if 0 < 5 <1/2)or1 (if1/2 < g <1).
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In the case of regularly varying tails:
» marginally, the Fréchet maximum domain of attraction;
» Extremal clusters: iid, S; = R; + Uj;
(R;) [3- stable regenerative sets,

P(Ui<x)=x"P 0<x<1

» Spread of the mass: D(t,[;) = Fj_l/al(t €S)).
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In the case of lognormal-type and super-lognormal-type tails:
» marginally, the Gumbel maximum domain of attraction;
» Extremal clusters: the shifted stable regenerative sets.

» Spread of the mass: D(t,I;) = —logl;1(t € S;).
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In the case of semiexponential tails:
» marginally, the Gumbel maximum domain of attraction;
» Extremal clusters: the shifted stable regenerative sets (5;).

» Spread of the mass: on each §; take an iid sample (W ;) from
the normalized Hausdorff measure; (I j): Poisson arrivals.

1 C Fk-
D(Wij,Tj) = ~log T} — = Blog<mi(sj))

Ca,3, cg constants, mg(S;) the Hausdorff measure of S;.




